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Part I

The Preamble



The struggle itself towards the heights is enough
to fill a man’s heart. One must imagine Sisyphus
happy.

Albert Camus

1 Introduction

1.1 Research Problem

A formidable challenge for immersive technology is the challenge of creating accurate spatial percep-
tion. Although humans adeptly perceive and act upon physical spaces, there is evidence that in mixed
reality (MR)—which refers to a broad spectrum of devices that integrate computer-generated and phys-
ical sensory information into a single percept—people’s perception of depth is distorted [94, 121, 132,
368]. Within the gamut of contemporary MR devices, virtual reality (VR) displays render completely
virtual images, while augmented reality (AR) displays render virtual images on top of real world spaces.
Depth misperception, in which one’s estimates of distances to and between objects is distorted, can

adversely affect people’s ability to determine the position of virtual objects in space. An accurate sense
of depth is particularly important for training and guidance applications, since even minor disruptions
in people’s perception of space for these applications can have negative consequences. For example,
overreliance on image guided navigation can introduce risk to patients if surgeons overshoot distances
to anatomical structures in a surgical site during operation [56, 495]. And heads-up displays in auto-
mobiles can affect driving judgments and safety when the positions of pedestrians, obstacles, and other
vehicles are incorrectly perceived [35, 434].
In completely virtual environments, like those rendered by VR displays, a pattern of depth compres-

sion has been established in head-mounted displays (HMDs) in which people’s distance judgments
to virtual targets are underestimated on average [64, 90, 94, 211, 212, 214, 224, 389, 425]. Some of
the contributing factors for the distortion of depth perception in these displays are the limited field
of view [64, 211, 212] and the weight of HMDs like those used to render virtual environments [501].
Yet less research has been conducted on devices that integrate both real and virtual visual information,
like those rendered by ARHMDs. Although a recent trend towards distance underestimation in ac-
tion space, which refers to intermediate distances between a viewer and approximately two and 30 me-
ters [96], has begun to emerge [109, 132, 222, 368, 397, 455, 478, 479]—the results of distance percep-
tion studies in AR are more variable than the results of studies conducted in VR.We discuss perception
and visual depth perception (Section 2.2) as well as how visual depth perception is affected by different
HMDs (Section 2.4) in more detail later in this dissertation.
One possible explanation for the variability of results in AR depth perception has to do with how

virtual graphics are integrated into real world scenes (Figure 1.1). A common complaint by users of
AR devices is that objects appear “floaty”. In other words, virtual objects seem to float above real world
surfaces, rather than lie on top of them. Yet few studies in AR have investigated how to best establish
surface contact between virtual objects and real world surfaces.
In the real world, the perception of surface contact seems effortless due to the presence of consistent
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1.1 Research Problem

Figure 1.1: Augmented reality displays not only render virtual images—they also integrate computer generated
images into real world scenes

lighting information [76, 144, 467]. For example, cast shadows, which are caused by obstructions be-
tween a light source and an object, are powerful cues for creating points of contact between objects and
nearby surfaces. The role of cast shadows in depth perception as a preeminent cue for surface contact
has been well demonstrated in traditional perception and computer graphics like those conducted by
Ni and colleagues [332, 333] and Kersten et al. [228].
However, rendering realistic lighting effects in devices on a computational budget—like mobile

phones and ARHMDs—can be expensive. Furthermore, ARHMDs that rely on additive light for
rendering, like the Microsoft HoloLens 2 andMagic Leap 1, cannot render dark color values photoreal-
istically. This makes the task of rendering realistic cast shadows in such displays difficult. Accordingly,
much of the current research on shadows in ARHMDs has been dedicated towards rendering more
realistic shadows given the limitations of additive light displays [203, 298, 299]. But are realistic cast
shadows necessary to create surface contact?
In the field of AR, some researchers have theorized that visual depth cue conflicts between virtual

and real objects (e.g., conflicting depth from shading information) is a contributing factor to distance
misperception in these displays [1, 107, 217, 245]. However, if we look at cast shadows as an exam-
ple, prior research by Kersten and colleagues [228] has demonstrated that the visual appearance of cast
shadows can be manipulated to unnatural extents while still preserving the cast shadows’ role in depth
perception. Although Kersten’s study was conducted in a completely virtual desktop environment,
their work provides some evidence that non-photorealistic rendering approaches may be beneficial for
enhancing depth perception in AR when realistic graphics are unfeasible.
Because cast shadows play an important role in depth perception, in Aim 1 of this dissertation, we

investigated how the manner in which we render cast shadows influences people’s ability to determine
surface contact. For this investigation, we directly evaluated people’s surface contact judgements across
multiple MRHMDs—each of which utilized a different approach for rendering computer graphics.
We manipulated the presence of cast shadow, the appearance of cast shadow, the shape of its associ-
ated object, and more over four experiments. The presence of cast shadows proved important for the
accuracy of surface contact judgments. However, remarkably, people’s surface contact judgments were
often more accurate for non-photorealistic than realistic cast shadows, even when the evaluatedMR
display was capable of rendering dark color values. These investigations showed that while the presence
of a surface contact cue, like a cast shadow, is important for determining the vertical position of an ob-
ject in space, visually realistic shadows may not be necessary for creating surface contact in MR.
To better understand this behavior and to describe it in more generality, in Aim 2 we wanted to in-

vestigate the effect of surface contact cues and object height above a surface on people’s distance judge-
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1.2 Research Problem

Figure 1.2: A zoomed out view of the virtual environment (left) and the environment as viewed stereoscopically
by someone with simulated central visual field loss (right)

ments from the viewer to virtual objects in space. As such, we conducted two evaluations of distance
judgments in MR. In the first evaluation, we assessed depth perception to targets on and above the
ground with and without cast shadows. In the second evaluation, we assessed depth perception to the
same targets presented with either a realistic cast shadow or a non-photorealistic graphical element for
surface contact. The results of this work proved complimentary to our surface contact perception ex-
periments. We found evidence that people’s distance judgements to objects with non-photorealistic
surface contact cues were similar to those made to objects with realistic shadows. Through this work,
we can more confidently assert that realistic shadows are not requisite for creating surface contact in
MR displays. Rather, the presence of information to indicate surface contact is important for depth
perception—regardless of the realism of the cue.
In the final aim of the dissertation (Aim 3), we extended the findings of our research to a larger au-

dience by demonstrating how individuals with vision impairments may benefit from our empirical
findings. People with low vision—a severe form of vision loss in which vision cannot be corrected with
glasses—include fourteen million people in the United States alone [343]. The needs of users with vi-
sion impairments, particularly those with severe or moderate loss, are often neglected in the design pro-
cess.
However, the needs of individuals with severe, and even moderate, vision impairments are often left

out of design considerations, which is shown by the prevalence of inaccessible applications in more
mature technology platforms, like mobile applications and web pages [398].
To better understand how realistic and nonrealistic graphics, like those studied in this dissertation,

can be used to enhance accessibility in MR, we developed a vision impairment simulation (e.g., Figure
1.2) that allowed for precise control of the extent and severity of vision loss. Designers and developers
of MR applications can better understand how their design decisions affect users with vision impair-
ments by experiencing vision impairments firsthand through simulation. Vision simulations may also
be employed for more rapid and accessible application development when test users with vision impair-
ments are unavailable. In two-dimensional (2D) digital media, it has been demonstrated that people
with severe vision loss benefit from non-photorealistic image enhancement techniques like edge and
contrast enhancements [70]. However, the domain of accessibility in immersive, three-dimensional
(3D) media is still nascent [322, 513]. As such, it is unknown if non-photorealistic effects will help or
harm distance perception inMR for individuals with visual impairments. In the current work, we em-
ploy our vision simulation to better understand the impact of visual field loss and computer graphics
on people’s spatial perception.
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1.3 Contributions

1.2 Contributions

As described previously, the primary aims of this dissertation are:

• Aim 1: Compare perceptually realistic & non-photorealistic shading methods on surface contact
perception for different virtual objects in MR.

• Aim 2: Determine the effects of shadow shading & object height above a surface on egocentric
depth perception inMR.

• Aim 3: Develop & evaluate low vision simulation for accessibility to extend prior research to
those with vision impairments.

1.3 Structure

In this dissertation we present the following:

I The Preamble
In Part I, we introduce the research questions of the dissertation and address how the dissertation
hopes to answer them (Chapter 1).

II Foundations
In Part II, we recount the fundamental research from which the current work derives. In Chapter 2 we
describe what constitutes a mixed reality display and how one’s perception of space is influenced by the
use of immersive devices like the ones studied in the current work. Then, in Chapter 3 we discuss how
mixed reality has been employed to better understand how those with vision impairments perceive their
surroundings. We also discuss how different types of visual impairment influence visual perception and
how researchers have tried to recreate the experience of vision impairment through simulation.

III Surface Contact Perception
In Part III, we first introduce the motivation and framework for our evaluations of surface contact per-
ception inMR (Chapter 4). We then describe the four experiments conducted to understand surface
contact perception as well as the influence of non-photorealistic rendering approaches to cast shadows
in Chapter 5. In these studies we ascertain the benefit of different rendering techniques for improving
surface contact perception inMR (Aim 1). This research has resulted in two publications: Adams et
al. [5] and Adams et al. [2]. Adams et al. [5] has been published in ACMTransactions on Visualization
and Computer Graphics (ACMTVCG). Adams et al. [2] is awaiting submission to the same journal.

IV Depth Perception
Building upon our prior investigations of surface contact perception, Part IV explores the extent to
which these findings generalize to the broader domain of spatial perception by examining distance per-
ception. In Chapter 6, we motivate our evaluations of and describe our methodology for assessing ego-
centric depth perception. We examine the efficacy of non-photorealistic rendering of cast shadows for
improving depth perception as well as the influence of an object’s vertical position in space in MR in
Chapter 7 (Aim 2). This investigation consists of two studies. The first experiment, Adams et al. [4]
was published in IEEE Virtual Reality (IEEE VR)—a premiere conference venue for the dissemina-
tion of virtual and augmented reality research. The second experiment, Bodenheimer et al. [54], was
published in the Proceedings of the ACM’s Symposium on Applied Perception.
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1.3 Structure

V Vision Simulation & Eye Tracking
In Part V, we begin to broach the final research aim of the dissertation. In this section, we extend our
research on non-photorealistic rendering and spatial perception to the domain of accessibility by con-
structing an immersive visual impairment simulation (Aim 3). This research was supported in part by
the Microsoft Research Dissertation Grant. The framework for the vision simulation is described in
Chapter 8, and in Chapter 9 we discuss our eye tracking data quality assessment for two eye-tracked
head-mounted displays. We perform this evaluation in order to better understand the technical limi-
tations of our vision simulation system. At the time of the dissertation defense, this work has yet to be
submitted for publication. However, an earlier version of the vision simulation was integrated into a
research grant proposal to the National Institutes of Health (NIH).

VI Enhancing Depth Perception for Vision Loss
Finally, in Part VI, of the dissertation we deploy our vision simulation for use in one final distance per-
ception assessment. In this work, we assess how central and peripheral vision loss impact distance per-
ception judgements. And we look at how non-photorealistic, or stylized, graphics can be used to im-
prove depth perception when a person experiences visual field loss. In Chapter 10, we motivate our
decision to study the impact of central and peripheral vision loss on depth perception. We discuss
the results of our experiment and the implications it has for the design of MR applications for both
normally-sighted and visually impaired individuals.

VII Closing
In closing, for Part VII we briefly summarize the progress of the dissertation towards its research aims.
In Chapter 11, we provide research and software development guidelines that can be derived from the
body of research completed through this dissertation, and we provide suggestions for future research
directions.
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Part II

Foundations



All perceiving is also thinking, all reasoning is also
intuition, all observation is also invention.

Rudolf Arnheim

2 Foundations for Perception inMixed Reality

To effectively design and evaluate immersive technology, one must understand how it is influenced by
human perception. Due to hardware and software limitations, immersive technology introduces simu-
lated sensory information that does not perfectly match the real sensory information that a person ex-
periences every day. Although developers can create compelling applications with contemporary mixed
reality displays, conflicting sensory information may disrupt the user experience—resulting in adverse
effects like distorted depth perception [213] , disorientation [401], and even nausea [344]. Fortunately,
researchers are actively investigating how to leverage humans’ perception of the senses to improve im-
mersive displays.
Because different kinds of mixed reality displays take unique approaches to render images onto a

person’s retina, different displays can influence human perception in unique ways.

2.1 Mixed Reality (MR)

Many different kinds of displays fall within the mixed reality continuum. As such, having a common
framework from which to reference different types of immersive displays is important for construc-
tive discussions about how these devices can be evaluated and improved. Within this document we use
the termmixed reality (MR) to reference any technology that mediates reality. Accordingly, ”MR”
encompasses the spectrum of immersive technologies [318, 432]. Moving forward, we will refer to dis-
plays that render completely virtual environments as virtual reality (VR) displays, and we will refer to
devices that integrate both virtual and real environments as augmented reality (AR) displays [24]. Both
virtual and augmented reality devices fall under the umbrella of mixed reality displays.
The current work is focused on a family of mixed reality displays called head-mounted displays.

Head-mounted displays, or HMDs, refer to immersive devices in which graphics are rendered via a near-
eye display. In this dissertation research, we exclusively investigate human perception in HMDs, as
opposed to spatial mixed reality, large screen mixed reality displays, and the like. Specifically, we look
at three types of mixed reality HMDs in the current work: optical see-through augmented reality (OST
AR), video see-through augmented reality (VST AR), and VR head-mounted displays.

2.1.1 TheMixed Reality Spectrum
A number of taxonomies exist for classifying immersive displays both within industry and within
academia [32, 276, 301], which has made the classification of these displays a somewhat contentious
issue. Among the most popular of these taxonomies is the ”Virtuality Continuum” proposed byMil-
gram and Kishino in 1994 [318]. In this seminal document, Milgram and Kishino describe all immer-
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2.1 Mixed Reality (MR)

Figure 2.1: The Reality‐Virtuality Continuum as described in Skarbez et al. [432]

Figure 2.2: Antique stereoscope manufactured by Underwood & Underwood. The components are made of
wood, aluminum, and brown velvet. The device was patented on June 11, 1901 in New York. Stereoscope
courtesy of my dear friend Joe (Yuzhou) Huang.

sive technology to lie within a ”Mixed Reality” continuum, where real environments are shown at one
end of the spectrum and completely virtual environments are shown at the other. Milgram and Kishino
argue that any device that presents both virtual and real world objects together, within a single display,
should be consideredMR. However, a limitation to this classic work is that it classifies immersive dis-
plays solely based on their ability to produce visual information. This limitation is a product of the
technical limitations of displays at the time, which relied predominantly on simulating visual sensory
information.
More recently, the Virtuality Continuum has been updated by Skarbez, Smith, andWhitton [432].

In this document, they expand the taxonomy to include all exteroceptive senses (i.e., sight, hearing,
touch, smell, and taste) as well as interoceptive senses (e.g., proprioception). A consequence of this
expanded taxonomy is that the displays that we have traditionally classified as ”virtual reality” displays
do not represent the end of the spectrum. Because contemporary VR displays are unable to create true
sensory agreement across exteroceptive and interoceptive senses, these displays are actually classified as
mixed reality displays in the updated Virtuality Continuum.
Skarbez and colleagues take this argument yet another step further. They state that there is no way

to avoid sensory conflicts in current immersive technology. A true virtual reality display would need
to stimulate the brain directly and simulate all senses in a manner similar to theMatrix films. As an
example, they explain that even if taste and smell were perfectly simulated, a person would ultimately
become hungry since no food was ingested. Consequently, Skarbez et al. argue that true virtual reality
is not achievable and is thus not aligned with the Virtuality Continuum—a point that is reflected in
their updated model (See Figure 2.1). In the interest of clarity, we will continue to refer to virtual reality
displays as those that produce completely virtual images, although we recognize that contemporary
displays are far from creating true virtual realities.
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2.1.2 Head-mounted displays (HMDs)

The evolution of HMDs

In 1838 Charles Wheatstone invented the first analog stereoscope [497], a device that allowed a person
to view images with a sense of depth. The impression of depth was achieved by showing the same im-
age, taken from different perspectives, to each eye. Shortly after their invention, stereoscopes became a
popular form of entertainment and their designs became more compact like the Underwood &Under-
wood stereoscope in Figure 2.2. Even today, classic stereoscopes from the late 1800’s and early 1900’s
can be found in abundance at retro arcades like the Musée Mécanique in San Francisco, California.
The first recorded, digital head-mounted display was Ivan Sutherland’s Sword of Damocles in 1968 [453].

By combining optical see-through lenses with cathode-ray tube (CRT) monitors, the Sword of Damo-
cles could render wireframe graphics over real world scenes. The eponymous display derived its name
from a Greek parable by the same title in which the courtier Damocles sits on the throne of the tyrant
Damocles only to find that a giant sword has been suspended by a single horse hair above the chair. In
a similar manner, Sutherland’s cumbersome augmented reality display and its position tracking system
were precariously mounted upon the ceiling.
Fortunately, over the last 50 years, the weight and ergonomics of HMDs have vastly improved. The

quality of computer graphics and position tracking solutions have progressed while the cost of con-
structing these devices has decreased. However, It was not until the cost of high density pixel displays
decreased, due to the popular rise of smartphones in the late 2000’s that VR began to be considered
commercially viable. As a result, researchers at the University of Southern California (USC) were able
to produce the technology that ultimately resulted in the production of the Oculus Rift DK1 in 2013
[14]. Since then, the field has seen a resurgence in research funding and product development.
More recently, the cost of building VR displays has plummeted from $23,900 for the nVisor SX60

in 2009 to $300 for the Oculus Quest 2 in 2021. By comparison, the price tag for current ARHMDs
remains high in 2021, with Microsoft’s HoloLens 2—an optical see-through ARHMD—costing
$3500 and the Varjo MR3—a video see-through ARHMD—costing $5500. One of the reasons for
the differences in price point across these MR displays is that there are different technical demands
and limitations for each that depends on whether it is a VRHMD, a VSTHMD, or an OSTHMD
(See Figure 2.3).
Although different MR displays may vary in modes of interaction and solutions for position track-

ing, there is commonality in how the displays are constructed and their fundamental limitations. For
example, most contemporary mixed reality displays permit rotation and position tracking—six degrees
of freedom (6DoF) tracking—within physical space. In this thesis, all of the evaluatedMR displays per-
mit 6Dof tracking.
Because we evaluate human perception in all three types of HMDs, in the next section we will dis-

cuss some of the technical differences between these displays. For more in-depth reviews of technical
differences between different MR displays, see Lavalle [260], Azuma [24], Billinghurst et al. [49], and
Rolland et al. [396].

Virtual reality (VR)

The concept of virtual realities captured the imagination of authors long before the technical term vir-
tual realitywas popularized by Virtual Programming Languages (VPL) founder Jaron Lanier in 1987
[443]. Perhaps the most compelling, forward-thinking examples of immersive technology are those
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2.1 Mixed Reality (MR)

Figure 2.3: Simplified specifications for three kinds of head‐mounted mixed reality displays: virtual reality, video
see‐through augmented reality, and optical see‐through augmented reality

from the writers of the early 1900’s. Short stories like Stanley G. Weinbaum’s ”Pygmalion’s Specta-
cles” (1935) and Ray Bradbury’s ”The Veldt” (1950) introduce early conceptualizations of VR goggles
and Cave automatic virtual environment (CAVE) environments. In a more theoretical, or arguably es-
oteric, manner people have argued that the conception of virtual realities existed long before any form
of analog or digital technology manipulated vision. A fair argument could be made that even Plato’s
infamous ”Allegory of the Cave” (520 CE)—in which another reality is projected as shadows upon the
cave’s wall—may be considered as an early inception of virtual reality.
Virtual reality HMDs are near-eye displays that rely on purely virtual rendering to create 3D images.

Images are rendered on a digital panel and viewed through fixed optics positioned between the panel
and the eyes of the viewer (See Figure 2.3 left). When HMDs are used to render virtual environments,
the real world is completely occluded by the chassis of the head-mounted display. As a result, people’s
visual perception is almost entirely informed by the display. One consequence of the complete substi-
tution of visual information is that it introduces mismatches between a person’s visual and vestibular
systems that can cause motion sickness [339].
Although contemporary VRHMDs are impressive feats of engineering that produce compelling vir-

tual experiences, the devices are not without limits. In the hardware design of HMDs, there is a trade-
off between field of view (FOV) and the resolution of the display such that increasing FOV often comes
at the cost of decreasing display resolution and vice versa. As a result, commodity level VRHMDs typ-
ically have fields of view of approximately 110◦ and resolution limits that range between 24 and 50 pixel
per degree (ppd). This stands in contrast to normal human vision, which provides approximately a
200◦ FOV [498] and a resolution of 120 ppd (or 20/10 visual acuity).
There are additional issues beyond limited resolution and field of view. For example, HMDs only

accommodate for a specific range of interpupillary distances (IPDs) for users—between 60 and 75 mm.
But the average adult IPD can ranges between 50 and 75 mm [105]. The problems of limited resolu-
tion, FOV, and IPD adjustments are common issues across near-eye displays, including VST and OST
ARHMDs. However, the field of view of virtual reality HMDs is typically larger [49] than those pro-
vided by augmented reality displays. For a more detailed discussion of the technical challenges of state-
of-the art HMDs, Zhan et al. provide an extended discussion [516].

Video see-through augmented reality (VST AR)

Video see-through HMDs create augmented reality through the use of stereoscopic video cameras,
which are placed side by side on the front of the head-mounted display (See Figure 2.3 center). They
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then combine virtual overlays with real world images using video composition techniques. A benefit
to this approach is that it permits blending between real and virtual inputs, which is a capability that is
unavailable to optical see-through displays. However, the video see-through approach also comes with
a computational overhead since multiple passes through the rendering pipeline are needed to render
captured videos to both eyes and to render the virtual overlays.
Video composition in most contemporary video see-through displays is performed using depth

information captured from the stereoscopic cameras via pixel-by-pixel depth comparisons [24, 49].
Depth information may also be captured using small infrared or other depth sensors within the display
to capture real world depth information. Depth comparisons in rendering allow both video and optical
see-through augmented reality devices to provide occlusion so that real objects can cover virtual objects
and vice versa, when appropriate.
A limitation to VST displays is that the resolution of the generated images is limited by the reso-

lution of the two stereoscopic cameras. As a result, the resolution of the real world view in video see-
through is degraded. Cameras can also introduce distortions, which must then be compensated for in
addition to any distortions from the optics of the display. These problems are relatively solved, but they
add to computational overhead of rendering. A more persistent issue for VSTs is that the video cameras
that are positioned at the front of the HMD are displaced from the position of the viewer’s actual eyes.
This causes a disconnect between what the user expects to see and what they actually see, such that if
the cameras are positioned slightly to the left of the viewer’s real eyes, then the view of the user will also
be shifted to the left. Even minor displacements require the viewer to recalibrate their movement to
compensate for the change in viewpoint.
Like VR displays, VSTHMDs can induce motion sickness after prolonged use. Even though the

video cameras provide visual information of the real world environment, motion sickness is caused by
the imperfect match of the video feed to what a person’s visual system expects [199]. Motion sickness
can be further exacerbated by other perceptual inconsistencies such as latency in the video feed [331].

Optical see-through augmented reality (OST AR)

Optical see-through HMDs are augmented reality displays that are characterized by the use of display
mediums that permit direct viewing of the real world surroundings. These displays typically rely on
mirrors or optical combiners to superimpose computer generated images onto real world scenes (See
Figure 2.3 right).
Because optical see-through provides an unobstructed view of the real world, a user’s view of the

real world is not degraded in these devices. Limitations in the display’s resolution only affect virtual
overlays. However, the virtual overlays created by these displays are semitransparent due to the use of
optical combiners and additive light to render images. Users may be able to see through virtual objects,
even when they are placed in front of real world objects. The reliance on additive light for rendering,
also means that OSTs cannot render black, which requires the ability to subtract light. Because the
traditional computer graphics pipeline assumes the ability to subtract and add light to generate color
values, traditional graphics approaches for rendering shading and shadows to not function properly in
additive light displays. Another characteristic of additive light displays is that they struggle to render
virtual images in bright spaces like the outdoors on sunny days.
A major limitation to optical see-through displays is that it is challenging to build OST devices with

a wide field of view. Complex optics are needed to optically correct any distortions in virtual stimuli
to match the real world view. In contrast, video see-through displays may use digital corrections to re-
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2.2 Perceiving Layout and Knowing Distances

solve visual distortions. Because optics solutions for correcting these distortions are currently expensive
and because they can add weight to HMDs, even contemporary optical see-through displays can only
provide a diagonal field of view between 20◦ and 60◦ [49, 396].

ARHMDTradeoffs

There are functional tradeoffs between immersive HMDs displays, such as the ability to view the real
world unobstructed in OST displays versus the comparatively easy integration of virtual and aug-
mented stimuli in VST [49, 396]. Researchers have investigated how the tradeoffs between OST and
VST displays affect a user’s ability to perceive and interact with virtual objects in AR [6, 29, 311], and
they have similarly evaluated how different augmented and virtual reality displays affect human per-
ception [41, 81, 212, 213]. Although direct comparisons of different HMDs can be challenging to un-
derstand due to the variability in optics, rendering, and position tracking across experimental studies,
these studies are nonetheless worthwhile as they allow us to assess specific cues and perturbations across
families of devices. Only by understanding how graphical techniques impact user experience and spatial
perception in different devices can researchers begin to create generalizable development guidelines for
the spectrum ofMR displays.
However, at present the state of this research is difficult to interpret. For example, in recent distance

estimation research that compared people’s perception in OST AR and VST AR displays, Medeiros
et al. [311] found that OST AR displays resulted in more accurate depth perception over VST AR
displays–yet Ballestin et al. found the opposite [29]. An added lay of complexity for interpretation is
that both evaluations were conducted with displays that were customized in-house. In this dissertation
we make comparisons between commercial displays to facilitate comparisons between our presented
research and future work.
Despite the challenges presented by perception and HMD comparisons, design guidelines have be-

gun to emerge from these studies. Ahn et al. [6] compared three AR devices: OST AR, VST AR, and
mobile AR. They found that across devices, people’s accuracy and speed was best in a size-matching
task when they were presented with a more detailed 3Dmodel (in this case, a 3D scanned object). In
contrast, Cidota et al. [81] evaluated how ’diminishing’ visual effects—in this case, fade and blur—
affected depth perception when reaching to targets in OST AR and VR displays. They found that mea-
sured performance was best in VR when visual effects were applied but performance was best in AR
when no visual effects were applied.

2.2 Perceiving Layout and Knowing Distances

The challenge of creating realistic representations of 3D space on flat surfaces is not a new one. Since
the rediscovery of linear perspective by the architect Filippo Brunelleschi circa 1420 CE, the desire to
create compelling illusions of depth in art has dominated visual composition in western art. Brunelleschi
realized that by drawing converging parallel lines into the horizon, he could create a sense of 3D space
that matched the visual perspective of the human eye. From the Renaissance onward, western artists
further enhanced the illusion of depth by combining linear perspective with other techniques like
chiaroscuro,a method in which contrasting light and shadows are used to enhance drama and depth.
The study of artistic techniques to create the illusion of depth has also influenced both the way we

understand visual perception and the way we render computer graphics. In perceptual psychology,
one may break down the types of visual information used to understand 3D space into two categories:
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monocular and binocular depth cues. Monocular depth cues, which can be inferred from a single retina,
are reminiscent of the techniques for generating depth in art, consisting of: linear perspective, light and
shadow, relative size, texture gradient, occlusion and more. Visual examples of these pictorial cues to
enhance the illusion of depth are displayed in Figure 2.4. However, because reality is not static, kinetic
cues like motion parallax are also included within the family of monocular depth cues. In contrast,
binocular depth cues rely on input from both eyes to create the perception of depth through stereopsis.
Stereoscopes (Section 2.1.2) rely heavily on binocular cues to create a sense of depth.
These depth cues provide important information to the observer about where items are positioned

in space. However, visual registration of depth cues in isolation provide an insufficient explanation for
the complex perceptual processes and spatial reasoning abilities demonstrated by humans. As such,
researchers that investigate spatial perception also emphasise the importance of ground planes, of sur-
faces, and of the horizon in understanding the layout of 3D space.

Figure 2.4: Examples from European art that showcase how a sense of depth can be created through monocular,
or pictorial, depth cues. From left to right, the paintings gradually introduce more depth to the images through
linear perspective, contrasting light and shadow, and texture gradient. Lamentation of Christ (c. 1305) by Giotto,
The Swing (c. 1767) by Fragonard, and The Calling of Saint Matthew (c. 1600) by Caravaggio are shown.

2.2.1 Cutting and Vishton’s depth cues
The human visual system relies on multiple sources of information to understand the structures of sur-
rounding environments. Spatial information that informs the viewer about where an item is positioned
in space is referred to as depth cue information. There are many kinds of depth cues, the most common
of which are listed in Table 2.1.
The visual system integrates a large number of depth cues to create accurate representations of space.

Although other lists of cues for depth information have been considered, the framework created by
Cutting and Vishton [96] is the most prominent. A large body of research has been dedicated towards
developing frameworks of depth cue taxonomies and towards modeling how depth cues are weighted
against each other [96, 257, 451, 466]. “Taxonomy is, afterall, the beginning of science, of measure-
ment” [96]. Although it has been demonstrated that perceptual uncertainty decreases as the number
of consistent depth cues increases to the limits of the perceptual system [208, 486], how these cues are
combined and utilized by one’s perceptual system is still an active line of research.
In this dissertation, we rely heavily on the framework laid out by Cutting and Vishton for our dis-

cussion of depth cues. For the sake of clarity, we will briefly review common visual depth cues, their
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Figure 2.5: Visual examples of pictorial depth cues from left to right: texture gradient, familiar size, shading, and
cast shadows

definitions, and under what circumstances these depth cues are utilized in spatial perception.
Monocular depth cues refer to the family of depth cues that are able to provide depth information

from only one eye. A large subset of these cues are pictorial depth cues, which relate to depth cues that
may be generated within illustrations and other still images. Simulating monocular depth information
in mixed reality can be accomplished through graphical solutions and through accurate position track-
ing between real and virtual environments. Some of the most commonly listed monocular depth cues
are as follows:

• Occlusion— otherwise known as interposition, is the obstruction of an object in the visual field
when another object is positioned in front of it.

• Relative Size — is when two or more similar objects are presented at different distances from the
viewer, the farther objects appear smaller. A similar cue is called familiar size. However, unlike
relative size information, familiar size information is influenced by one’s prior experiences with
an object.

• Shading— is the interaction of light and shadow. As light reflects off of surfaces, different grada-
tions of light and shadow appear onto objects and onto nearby surfaces. These light interactions
are apparent even in dimly lit scenes.

• Texture Gradient — is the progressively finer appearance of textures as they recede from the
viewer. It can also be seen in the appearance of groups of objects, where objects within the group
appear more dense when they are positioned farther away.

• Motion Parallax— is a kinetic cue for depth in which objects that are farther away from the
viewer appear to move slower than those that are near the viewer.

• Angular Declination— or the height of an object in the visual field, is the angular direction of a
target relative to eye level. Angular declination is scaled to the eye height of an individual and it is
typically relative to the position of the ground surface. [346].

• Brightness — a related depth cue to shading is brightness. Typically, brighter objects are seen as
closer to the viewer than dim objects.

• Aerial Perspective— also called atmospheric perspective, is only present at far distances from
the viewer. When one looks onto the horizon, they may notice that distant objects like moun-
tains and building appear fainter or more blue. These modulations in contrast and hue are aerial
perspective.
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• Accommodation— ocular accommodation is the process of the eye adjusting its lens to focus on
an object at some distance from the eye. As humans age, the muscle contractions around the eyes
weaken and the lens of the eye hardens so that their eyes are no longer able to focus on targets
placed at near distances. This condition is referred to as presbyopia.

Binocular depth cues create a sense of depth by employing both eyes. Simulating binocular depth
within mixed reality head-mounted display is typically accomplished through optics and hardware solu-
tions. The two binocular depth cues are:

• Vergence— is the physical rotation of eyes that occurs when the eyes focus on near and far ob-
jects. When the eyes focus on nearby objects, they simultaneously rotate inward to permit binoc-
ular fusion. Conversely, the eyes rotate outward for objects that are farther away.

• Binocular Disparity — is the difference in position between two eyes. This horizontal separation
allows for the view of each eye to overlap to create the perception of depth upon fusion.

Discussions of depth perception typically refer to the perceived distances between an observer and a
target positioned in space. This type of depth perception is referred to as egocentric distance perception.
Much of the early work in psychology and the contemporary work investigating perception in mixed
reality focuses on the study of egocentric distance perception since egocentric perception affects not
only one’s perception of space but also their ability to perform actions. This term stands in contrast to
exocentric distance perception, which refers to the perceived distance between two external targets.

Depth cues are weighed by distance

The potency of the information provided by most depth cues is dependent on the distance of the cue
from the observer. Effective distance ranges are typically divided into three areas: personal space, action
space, and vista space [96]. Personal space refers to the space that is within 2m of the viewer, which is
the space within and just beyond an arm’s reach.

Action space, a space in which one may quickly perform actions such as throwing and talking, refers
to distances between 2m and 30m. AndVista space, as the name implies, refers to distances beyond,
typically farther than 30m. These divisions and the designated weights are idealized delineations, but
they have been functional for guiding research in vision, perception, and computer graphics.
Table 2.1 displays each of the mentioned depth cues by cue type (monocular, binocular, & oculo-

motor), by effective distance range (personal, action, & vista), as well as by whether the cue provides
absolute or relative information about an object’s position in space.

2.2.2 Methods to evaluate distance perception
Perception is dynamic. Because perceptual systems attend to information as needed, they are influenced
by the task that is being performed in a given moment. As a result, it is perhaps unsurprising that the
results of distance estimation experiments, even in real world environments, can vary depending on
the measurement paradigm used [13, 92, 153] and depending on the environmental context that is
provided [13, 258, 508].
There are several paradigms for evaluating depth perception, both in reality and within immer-

sive technology. Although, each paradigm requires people to make judgments about perceived dis-
tances, the spatial information that people must encode differs. Distance estimation paradigms may
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require participants to register egocentric depth information, in which distance information between
the viewer and objects in space must be encoded, or exocentric (also known as allocentric) depth infor-
mation, in which relative distance information between different objects in space must be encoded.
This distinction is important as prior research has shown judgments of distances to be anisotropic
such that egocentric and exocentric distance judgments differ even when the same extents are evalu-
ated [275, 305, 442], although, depending on the experimental task, there may be interactions between
the two [402, 442].

Exocentric distance measures

For exocentric distance perception, the most commonly employed measure is perceptual matching (aka
visual matching). Perceptual matching is a relative measure for depth perception, which, in AR re-
search, involves aligning a virtual target with a real one in space. Other experimental designs that eval-
uate relative depth judgments include depth ordering, in which an array of targets must be sorted from
nearest to farthest and two alternative forced-choice (2AFC) design, in which a viewer must decide which
one of two presented targets is closer. In this dissertation we rely on a 2AFC paradigm to evaluate sur-
face contact in Chapter 5 and we have proposed the use of visual matching to evaluate depth percep-
tion in individuals with vision impairments in Chapter 7

Egocentric distance measures

The most common techniques for evaluating egocentric depth perception in immersive technology
are verbal report and visually directed actions like blind reaching and direct blind walking. Verbal re-
port is a cognitive measure [282], whereas visually directed actions require perceptual motor coordi-

Table 2.1: The different depth cues with their effective distance ranges, modified from prior research by Cutting
and Vishton [96], Nagata [325], and Kytö et al. [254].

Depth Cues and Their Properties

Depth Cue
Cue Type Effective Distance Range Type of Distance

(M)onocular, (B)inocular, (P)ersonal, (A)ction, (A)bsolute, (R)elative
(O)culomotor (V)ista

Occlusion M P, A, V R
Relative Size M P, A, V R
Shading M P, A, V R
Texture Gradient M P, A, V R
Motion Parallax M P, A A, R
Angular Declination M A, V A, R
Brightness M A, V R
Aerial Perspective M V R
Accommodation M, O P A
Vergence B, O P A
Binocular Disparity B P, A R
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nation [370]. Responses in verbal report are recorded by asking a person to estimate the distance to a
target using a familiar distance unit [282]. In contrast, visually directed actions require a participant to
view a target, close their eyes, and then perform an action directed towards the target [283]. A num-
ber of different actions have been used to conduct visually directed action experiments. Direct blind
walking requires participants to walk in a linear trajectory while blindfolded to a previously viewed tar-
get, while blind reaching requires participants to reach towards a previously viewed target while blind-
folded. Other visually directed action paradigms, like blind throwing, exist, as well.
Alternative action-based measures that require more complex strategies, like triangulated blind

walking [232, 233, 500] or timed imagined walking [153, 232, 373] may be employed when physical
space is limited. Triangulated walking requires participants to indirectly walk to a previously viewed
target while imagined blind walking requires participants to pretend they are walking to a previously
viewed target. However, prior research has shown that these alternative action-based measures are
less accurate than direct blind walking [153, 500], perhaps due to their cognitive complexity. And, al-
though triangulated walking may be theoretically employed to evaluate farther distances, Klein et al.
has shown that its accuracy deteriorates at distances greater than 10 meters [232]. In this dissertation,
we rely on verbal reports of distance estimates to understand the influence of shadows on absolute dis-
tance perception in Chapter 6.

Distance perception measure trade-offs

When evaluating egocentric distance perception in immersive technology, verbal report is often more
feasible to execute in practice than visually-directed actions. Verbal report may be used at any distance,
while protocols like direct blind walking and blind reaching are limited to a specific range of action-
able distances. In addition, technical constraints of equipment (e.g., tethered power cable and position
tracking quality) can preclude the use of visually directed actions. Verbal report may also be used for
measuring exocentric distance judgments between targets, although this approach is less common.
However, perhaps because verbal report is a cognitive measures, verbal distance judgments are of-

ten more variable [13, 247, 508] than visually-directed actions, and they can be susceptible to anchor-
ing effects—in which prior judged distances influence later judgments over time [353, 464, 465]. In
contrast, visually-directed actions are reputed to be a more accurate measure of people’s distance per-
ception [13, 353]. For example, direct blind-walking is generally accurate up to 20 meters in real world
environments [281, 283, 392].
Yet, as pointed out in recent work by Feldstein et al. [121], even when a seemingly accurate measure

like blind walking is employed, people’s accuracy can vary between groups of participants. As such,
even though most prior research on blind walking has shown accurate distance estimation [95, 205,
281, 392, 440], a notable amount of research has also found distance underestimation with this proto-
col [13, 213, 224, 502]. In contrast, people’s verbal report judgments consistently exhibit some under-
estimation even in real world studies [224, 232, 283, 389].
Different degrees of accuracy across depth perception measures may suggest that a common, un-

derlying perceptual representation informs two differently calibrated responses [283, 370] or it could
suggest separable underlying representations for perceptions of space and action [89, 151]. The ex-
act perceptual representations that underpin depth perception are a current area of theoretical de-
bate [92, 283, 370]. However, contemporary researchers have begun to favor a more integrative, em-
bodied approach that permits the interplay between representations of space and action [92]. As such,
perception researchers often stress the importance of using multiple measures of distance perception to
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understand how depth is perceived [121, 389, 508].
For example, verbal reports are typically influenced by the visual context of an environment even

when visually-directed actions are not [247, 508]. Studies have found distance estimates in indoor envi-
ronments may be more accurate or overestimated than those made in outdoor environments [13, 258,
369, 464, 465, 508], and this effect is more frequently pronounced in verbal estimates of distance than
in visually directed actions [13, 464, 465, 508]. This may be due to the presence of fewer anchoring
depth cues in flat, open environments. The influence of environmental context is of particular interest
to the current work, since prior research by Ooi, He, and colleagues demonstrated that context effects
associated with a ground plane can influence depth perception when blind walking and perceptual
matching measures are employed [427, 510]. The ground plane is especially important for evaluations
of depth perception and the influence of shadows on depth perception.
Distance estimation studies are typically conducted as relative pairwise comparisons to isolate factors

that contribute to distance underestimation. With this approach, variability across distance estima-
tion measures is less important but which evaluation method is selected is. For example, it may be a
good idea to use verbal report when environmental context or graphical quality is manipulated since
this measure is more sensitive to contextual manipulations. A case in point is that almost all depth es-
timation studies in VR displays have found distance judgments to be underestimated—regardless of
measurement protocol [64, 90, 248, 359, 373, 389, 500, 518]. However, within this body of work, the
quality of graphics has influenced distance estimates with verbal report but not visually-directed ac-
tions [248, 468].

2.3 Perception of Visual Space

2.3.1 Gibson’s Ground Theory of Space Perception
In 1950, James J. Gibson introduced his ground theory of space perception in which he proposed that
there is “no such thing as the perception of space without the perception of continuous background
surface” [144]. In this document and many others that followed, Gibson postulated that visual space
is not defined by arrays of objects in empty air—but by the layout of surfaces, sets of adjoined surfaces,
and entities that are arranged in relation to surfaces [145, 146].
As the field of computer science advanced, Gibson’s theories were tested with computer generated

graphics. By evaluating people’s distance perception, researchers were able to manipulate intermediate
platforms and surface discontinuities to measure how they affected one’s perceived distance to a tar-
get in highly controlled, desktop virtual environments [48, 315]. In particular, Meng and Sedgwick
demonstrated that when continuous ground surface is disrupted, the visual system is unable to estab-
lish a reliable frame of reference [314, 419]. The visual system, consequently, fails to obtain correct
estimates of absolute distance. As such, the accuracy of people’s distance perception is disrupted when
surface discontinuities along the ground—such as gaps in the floor [427] or changes in texture gradi-
ent [314]—are positioned between a viewer and a target.

2.3.2 The role of surfaces in perceiving spatial layout
When cues that link objects to nearby surfaces are absent, individuals judge distance based on optical
contact—or the location at which the projected image of an object contacts the image of the ground
beneath it—to determine position in space [314, 332, 352]. As a result, people’s distance judgments to

19



2.3 Perception of Visual Space

targets positioned above the ground are perceived as farther away than those positioned on the ground [332,
397]. This phenomenon has been demonstrated in both real [383, 384] and virtual environments [48,
315]. More recently, Salas-Rosales et al. [397] have confirmed this effect in augmented reality, as well.
Specifically, Salas-Rosales and colleagues demonstrated that floating targets are perceived as farther
away than grounded ones in an optical see-through augmented reality display, the Microsoft HoloLens 1.
It is also possible to approximate distances in the absence of a ground plane by using angle of decli-

nation (i.e., the angle between the viewer’s eyes and the horizontal ground plane or an object along the
horizontal ground plane) alone [346, 417]. However, correct distance judgments at intermediate dis-
tances require both angle of declination and ground-surface information for correct judgments [346,
347]. The presence of a ground-surface is important for obtaining the viewer’s eye height, which can be
determined using the body’s senses and visual information from the surrounding environment [191,
417, 447, 510]. Because angular declination is defined with reference to an individual’s eye height, the
presence of a reliable ground plane is requisite for accurate perception of eye height as well as angular
declination [427, 510].
Gibson’s formulation of the perception of space draws connections between surfaces and objects

within an environment. The visual system extracts information about surface layout from patterns of
light and divides the problem into a set of visual cues, with each cue describing a particular visual pat-
tern that can be used to infer properties of surface layout or other aspects of the environment. These
visual depth cues can be isolated to better understand how individual pieces of visual information con-
tribute to our perception of depth.

The influence of height in the visual field

It is possible to approximate distances in the absence of a ground plane with height in the visual field
alone [346, 478]. Height in the visual field is closely related to, and sometimes equated with, angular
declination (i.e., the angle between the viewer’s eyes and the horizontal ground plane) [352, 487, 510].
However—even though height in the visual field may be used to approximate distances when an im-
plicit, invisible horizon is assumed [346, 478]—accurate distance judgments often require both height
in the visual field and ground-surface information [144, 346, 347, 447]. This is because the presence of
a reliable ground plane permits the accurate perception of eye height, which is an important variable for
computing height in the visual field [427, 447, 510].
As such, it is important to consider how the vertical position of a virtual object can influence peo-

ple’s distance judgments when interpreting prior research on depth perception in AR.While some of
this work has been conducted with targets positioned on the ground [132, 212, 213, 222, 372, 455],
much more depth perception research has been conducted with floating targets [41, 81, 100, 102, 135,
157, 255, 311, 360, 361, 428, 429, 456].
Few AR studies have considered how the vertical position of a virtual object (e.g., whether the object

is grounded or floating) can influence people’s distance judgments. Dey et al. [101] found that height
in the visual field influenced people’s depth judgments in a mobile AR study. And Kytö et al [255]
revealed that people’s confidence in depth judgments was worse for floating targets that were higher in
the visual field (i.e., 1.0m versus 0.5m above the ground).
Yet, in the last few years, research published by Salas-Rosales et al. [397] as well as Hertel et al. [175]

has provided evidence that depth judgments in AR differ when target objects are presented as floating
or along the ground. Specifically, both Salas-Rosales and Hertel provided evidence that people perceive
floating objects as farther away than those presented on the ground when cast shadows were not ren-
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Figure 2.6: A recreation of the “ball‐in‐a‐box” demonstration [228]. Although the sphere is located at the same
position in all four images, it appears closer in the bottom images due to the placement its cast shadow. The
influence of cast shadow on an object’s position works regardless of whether the shadow is rendered realistic
(left) or nonrealistic (right) manner. Top: the sphere seems to rest along the ground due to an anchoring shadow
beneath it that connects the sphere with the back of the box. Bottom: the sphere seems to float above the
ground with a detached shadow beneath it that connects it towards the front of the box.

dered in AR. These findings support prior research in both real and virtual environments that shows
people rely on optical contact information to make depth judgments when surface contact cues are
absent [314, 332, 352] (See Section 2.3.3). The importance of surface contact information for float-
ing objects is further reinforced by the research reported in this dissertation in which people were less
confident in surface contact judgments to target objects when cast shadows were removed [5].

2.3.3 The impact of shadows on surface contact
Cast shadows—from which humans infer size [75, 491, 514], from which humans infer shape [78,
234], and from which humans infer the distance between an object and adjacent surfaces[195, 295,
467]—play a particularly important role in our perception of space. In traditional computer graphics,
evidence shows that shadows function as “visual glue” to attach virtual objects to surfaces [295, 467].
Furthermore, people become more accurate when estimating egocentric distances when objects are
clearly connected to the ground via shadow [333]. Distance perception may also be enhanced by the
presence of another object being wedged between the target and the ground plane beneath it [314,
315].
In fact, one’s perception of the position of an object can shift dramatically depending on the place-

ment of its associated cast shadow [297, 333]. Kersten et al.’s “ball-in-a-box” study provides perhaps
one of the most poignant examples of this response [228]. Kersten and colleagues demonstrated that
by changing the location of a shadow in space, even a stationary object may appear to move (See Fig-
ure 2.6). Furthermore, their research demonstrated that cast shadow shading could be manipulated to
unnatural extents—in their case with light, non-photorealistic, light shading—and yet still provide a
powerful tool to determine spatial location.
In Kersten et al [228], given a stationary target, lightly shaded (photometrically incorrect) shadows

were less effective in producing apparent motion in depth than more traditional, dark shadows. How-
ever, in a 3D environment with motion cues, light shadows proved as effective as dark shadows for de-
termining spatial location [228].
Related research in the domain of visual search may provide some insight into the way we processes

non-photorealistic lighting information. Visual search investigations have found that light shadows are
processed more slowly ( a matter of milliseconds) than dark shadows in visual search tasks—providing
evidence that a higher-level cognitive process may be required to process shadow shading approaches
that do not conform to the darkness constraint of more naturally occurring shadows [110, 204, 390].
Should the reader desire a deeper understanding of the relationship between shadows and perception,
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we suggest “The Visual World of Shadows” by Casati and Cavanagh as a notable, recent review [76].

2.4 Perception of Visual Space inMR

Although the real world is filled with rich, consistent depth information [179, 257], mixed reality dis-
plays only provide a subset of these cues. The presence of conflicting depth cue information causes
perceptual uncertainty, which indicates that an individual lacks confidence about their assessment of
where objects are positioned in space [107]. It has been demonstrated that perceptual uncertainty de-
creases as the number of consistent depth cues increases to the limits of the perceptual system [208],
and it has been theorized that consistent depth cue information between real and virtual objects will
improve depth perception in mixed reality, accordingly [1, 107, 245].
In computer graphics, researchers and developers have utilized information from human perception

and properties of light and shadow to create increasingly realistic imagery. However, there are limita-
tions to what can be rendered for a given display based on the pixel density, the power requirements,
the optics of the display, and whether graphics need to be rendered in realtime or not. So then what are
the requirements for accurate depth perception in mixed reality displays? How should virtual images
be rendered to create accurate depth perception? And can we leverage this information to enhance the
accessibility of this technology?

2.4.1 Depth perception inMR

Depth is compressed in VR

Virtual reality distorts distance perception. Research over the past 20 years assessing people’s abilities
to judge absolute distances to targets, through measures like blind walking and verbal report, have
shown that people consistently underestimate distances in VR (see Creem-Regehr et al. [90] or Ren-
ner et al. [389] for recent reviews). Depending on the lab and the measure of distance perception em-
ployed, underestimation has ranged from 40-80% in virtual reality, regardless of differences in HMDs
and tracking systems [90]. The problem of distance underestimation, in which virtual targets are per-
ceived as closer than their actual position, is also referred to as depth compression.
Quality of graphics has also demonstrated an effect on distance judgments when a cognitive measure

of distance perception, verbal report, was used [468] but not when an action based measure of distance
perception, blind walking, was employed [501]. The results of these studies indicate a tentative effect of
the quality of graphics on distance perception in VR. However, when interpreting distance perception
research, special attention must be paid to the experimental protocol that has been used, since exper-
imental protocol influences what spatial information is encoded to make judgments. For example, a
cognitive measure like verbal report is more sensitive to the influence of environmental context. And
an action based measure, like blind walking, is susceptible to the angle of declination from a viewer to
a target—especially when a small target is placed on the ground. Employing multiple measures of dis-
tance perception is recommended to more confidently generalize effects.
Only with the advent of commodity-level HMDs has distance compression in virtual environments

begun to diminish in severity. Researchers have now successfully isolated some factors that contribute
to distance compression, including mechanical factors, such as added head weight [64, 501] and re-
stricted field of view [233, 274, 501] These findings have been used to inform the design of contempo-
rary head-mounted displays as well as their applications. As a result, recent studies evaluating distance
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Figure 2.7: A researcher wearing the Microsoft HoloLens views a virtual cube that is placed on the floor. Image
from Salas‐Rosales et al. [397].

estimation in commodity VR devices have reported 10% or less underestimation [64, 94, 425]. How-
ever, depth compression still persists in contemporary virtual reality head-mounted displays [106].

Depth is misperceived in AR

Although real world depth cues are consistent and reliable, only a subset of depth cues are available
for the superimposed graphics rendered by AR displays. Furthermore, in augmented reality depth in-
formation provided by virtual objects often conflicts with the depth information provided by the real
world environment (e.g., inconsistent shading), which produces cue conflicts and perceptual uncer-
tainty [107]. Figure 2.7 visualises this problem as captured by the Microsoft HoloLens, and optical
see-through AR device.
Interpreting prior depth perception research in AR can be perplexing. When estimating egocen-

tric distances, some prior studies have found that people underestimate distances in augmented re-
ality [47, 255, 397, 455, 479]—a pattern similar to the one consistently elicited by virtual reality de-
vices [94, 282]. For example, in 2010, Grechkin et al. found comparing blind walked estimates of the
distance to objects in a virtual hallway compared to a visually matched real hallway with objects dis-
played through augmented reality found similar underestimation (60% of real distances) of AR judg-
ments and VR judgments [153]. Yet other depth evaluations have found patterns of accurate estima-
tion or even overestimation [213, 374, 454]. Furthermore, this variability in results occurs across both
video see-through [255, 479] and optical see-through HMDs [94, 213, 374, 397, 454, 455].
There are several factors that may play a role in immersive AR, including the depth cues provided,

the distances evaluated, and the type of display evaluated. At present, it is difficult to draw reliable con-
nections between distance estimation results for OST and VST AR displays because of differences be-
tween devices or experimental protocols. Direct comparisons between devices may provide important
insights into how the technical tradeoffs between ARHMDs influence perception. At present, it is
difficult to ascertain how depth perception in one family of AR display differs from another given the
paucity of direct comparisons [6, 29, 311, 361]. Even among those few comparisons, none have been
conducted between two contemporary, commercially available ARHMDs.

Depth in Optical See-through AR

In OST AR studies that evaluate depth perception judgments to targets at near distances (distances
< 2m) have been variable. While more studies have found that people’s depth judgments are overesti-
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mated, especially when compared to real world objects [361, 395, 428, 429, 456], a notable amount of
work has also found underestimation [307, 311, 360]. However, distance judgments in action space,
which ranges between 2m and 30m, consistently trend toward underestimation [109, 132, 175, 222,
368, 397, 455, 478, 479].
In their absolute distance estimation study, Salas-Rosales et al.[397] found that distance judgement

to virtual targets in the Microsoft HoloLens 1 were underestimated by 15% on average when targets
were on the ground and by 7% on average when targets were floating. Keil et al. [222] similarly reported
that verbal reports to distances were approximately 12% underestimated on average. Both studies evalu-
ated distances under 7 m.
At somewhat farther distances in action space (10 m - 30 m), Gagnon et al. [132] reported percep-

tual matching judgements of depth in the Microsoft HoloLens 1 to virtual human avatars in space
to be underestimated by 15%, whereas distance matching judgements were underestimated by 3% to
real humans. However, they found notably more distance underestimation when an absolute distance
measure, verbal report, was used to measure distance estimates. In this case distances were underes-
timated by 36% and 10% on average to virtual and real humans, respectively. The authors argue that
the additional underestimation expressed in their verbal report study may be due to anchoring effects
[464, 465]. Only one study thus far has been conducted in the Microsoft HoloLens 2. This work, con-
ducted by Hertel & Steinicke [175], evaluated relative depth judgements to farther distances yet (15m -
75m) via perceptual matching, and they found distances were underestimated by approximately 14.3%,
on average.
This research provides some preliminary evidence that depth perception in the Microsoft HoloLens

2 is similar to depth perception in the HoloLens 1, despite differences in specifications, like field of
view. Moving forward, it will be important for future research to evaluate depth perception in action
space for different, contemporary OST AR displays like the Magic Leap One to be able to generalize
these research findings.

Depth in Video See-through AR

Less distance perception research has been conducted in VST head-mounted displays [109, 131, 368,
478, 479], and much of it has been conducted in recent years. Further, the majority of these studies
have been conducted with either custom built or retrofitted displays, which can complicate compar-
isons across studies. Jamiy et al [109] and Vaziri et al. [478, 479] both created customized video see-
through displays by affixing forward-facing cameras to the front of commercial VR devices. Vaziri
modified the nVisor ST50 while Jamiy modified an Oculus Rift DK2. Pfeil et al. [368] and Gagnon
et al. [131] both evaluated distance perception using a ZEDMini camera attached to the front of the
HTCVive and HTCVive Pro, respectively.
Using both verbal report and blind walking, Jamiy et al. [109] found that absolute, egocentric dis-

tances in VST ARwere underestimated by approximately 20% overall, for both estimation protocols.
Vaziri et al. [479] then compared the effect of unaltered video input and non-photorealistic video in-
put (via a Sobel filter) on people’s distance perception with blind walking. The found that distances in
both conditions were underestimated when compared with real world distance estimates. But they did
not find any significant difference in responses between the two viewing conditions. In their followup
work, Vaziri et al. [478], reported less distance underestimation, approximately 10% underestimation,
when evaluating distance judgments in an open field.
Using the ZEDMini, Pfeil et al. [368] assessed people depth perception to real targets on the ground
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via blind throwing. They found that in their VST AR condition, people underestimated targets by 8%
on average—in comparison to 5% underestimation with natural viewing conditions and 7% underes-
timation when the real world was viewed with a restricted field of view. Although Gagnon et al. [131]
evaluated distance perception in the ZEDMini, the real world environment was not visible since the
viewer was presented with a virtual environment via a green screen positioned in front of them.
Interestingly, none of the aforementioned distance estimation studies in VST AR evaluated dis-

tance judgments to virtual targets. They have instead chosen to evaluate distance judgments to real
world targets viewed through video-see through display [109, 368, 478, 479]. This is because, in VST
AR, one’s visual perception of the real world is mediated by stereoscopic video cameras. As such, re-
searchers have assumed that distance perception—even to real world objects—will be misperceived in
VST AR [49, 396]. Thus far, the results of prior research has confirmed this assumption. In contrast,
OST AR displays allow for unmediated viewing of the real world. As such, depth perception research
in these displays has focused on evaluating peoples depth judgments to virtually rendered targets within
real world spaces. In this dissertation, we bridge this gap in literature by assessing distance judgements
to virtual targets in both video and optical see-through displays (Chapter 6).
Our understanding of how people visually perceive space in video see-through augmented reality

HMDs is still in a nascent stage. A wide range of technical setups have been employed to study depth
perception in these devices, which makes it difficult to isolate what specific mechanical, ergonomic,
or optical properties contribute to distance compression in these devices. Although, there is some ev-
idence that field of view may be a factor [368]. It is also unclear to what extent distance judgments to
virtual targets will differ from distance judgments to real targets when their appearance is mediate by
stereoscopic cameras.

2.4.2 The importance of shadows inMR
As discussed in Section 2.3.3, cast shadows provide a strong and salient cue for depth perception by
forming a point of contact between an object and adjacent surfaces [195, 295, 467]. This relationship
has been demonstrated further by distance perception research in virtual environments in which peo-
ple’s egocentric distance estimates to targets were more accurate when cast shadows were present [333].
And, yet, most of the aforementioned traditional graphics research was conducted via desktop and

in completely virtual environments. It is not known how the manner in which shadows are rendered
across head-mounted virtual and augmented reality devices affects a viewer’s sense of ground contact
to improve spatial perception in AR. This may be especially problematic for augmented reality devices,
which combine both real and virtual depth cue information. This process often results in conflicting
depth information and increased perceptual uncertainty [1, 107, 208].
For both video and optical see-through displays—and, indeed, any graphical device on a computa-

tional budget—rendering lighting effects can be expensive. Due to this and due to the dearth of com-
mercially available ARHMDs prior to 2016, few studies in immersive AR have examined the effect of
shadows on depth perception [5, 102, 135, 175, 449].
However, researchers have begun investigating how graphically provided depth cues must be ren-

dered to enhance spatial perception in AR devices. While the results of some research evaluating depth
cues like shading and texture have been mixed, findings suggest that shadows successfully improve the
accuracy of depth perception in both immersive OST AR [102, 135, 372] and VST AR [47, 449] dis-
plays. This literature also suggests that the manner in which shadows are rendered makes a difference
for accuracy.
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Shadows in Optical See-through AR

Rendering cast shadows can be challenging, especially in OST displays that rely on additive light for
rendering. In these displays, the darker the color value, the more transparent the appearance of the
color becomes until the color becomes completely transparent when black is rendered. Because of this,
much of the prior research investigating cast shadows in AR has been directed towards how to best
render them in OST AR displays [193, 203, 235, 298, 299] or how new display technology may be con-
structed to allow for subtractive rendering in optical see-through displays [206, 219].
The inability to produce dark color values with fidelity in OST AR is especially problematic for ren-

dering cast shadows. Manabe et al. [298, 299] developed methods to produce more perceptually valid
shadow rendering techniques for OST devices. Ikeda et al. [203] used simultaneous contrast to create
the illusion of dark color values within the umbra of a shadow by applying brighter color values outside
of the shadow’s penumbra. In their evaluation, they found that their illusory shadowmethod caused
the umbra of the shadow to be perceived as dark–despite the fact that nothing was rendered within the
shadow’s umbra itself.
This finding provided evidence that simultaneous contrast illusion may be an effective approach for

rendering cast shadows in additive light displays [203]. Our first experiment in this dissertation uses a
similar technique, which we refer to as the gradient shadow, to render more realistic shadows in optical
see-through displays. However, our technique uses a simple linear falloff to produce a gradient, whereas
the algorithms proposed byManabe, Ikeda, and colleagues [203, 298, 299] produce more complex
lighting interactions. For example, Ikeda et al. [203] use a photograph as a texture to estimate the ra-
diance of the surface along with an empirically determined constant to account for viewpoint changes
in their falloff algorithm.
Research on shadow generation algorithms gives rise to another question: howmuch fidelity is

needed for accurate spatial perception of shadows in AR? In this dissertation we evaluate people’s sur-
face contact judgments for both perceptually motivated shadow rendering methods, including a sim-
ple, dark gray shadow as well as a variant of the method developed byManabe, Ikeda, and colleagues
[299], and a non-photorealistic rendering (NPR) method for shadows. Over a series of studies, which
are reported in Chapter 5, we found that more realistic rendering techniques for shadows did not in-
herently benefit surface contact judgements. Further, people’s judgements for the NPRmethod, which
produced a white shadow, were more accurate in both OST AR and VST AR head-mounted displays.
In our proposed research, we extend this research to the problem space of egocentric distance percep-
tion in order to better generalize our results and understand how our research may be used to interpret
prior research on the influence of shadows on depth perception in OST AR.
Previous research on depth perception in OST AR has provided evidence that lighting misalignment—

in which the position of real world and virtual lights do not coincide—may adversely affect distance
perception [135], unless the misalignment is due to the use of drop shadows [102]. Drop shadows are
dark silhouettes (“shadows”) that are displayed (“dropped”) immediately below an object–regardless
of the position of light sources in a scene. In a study of depth perception in immersive OST AR, Diaz
et al. [102] found that participants’ depth perception was significantly better in a drop shadow condi-
tion over a coherent lighting condition. This same work also suggests that the salience of a shadowmay
affect spatial perception such that more transparent shadows are less effective as depth cues.
Diaz et al. [102], Gao et al. [135], and Hertel et al. [175] have all found that people’s accuracy in rela-

tive depth judgments improves when floating targets are rendered with cast shadows.Hertel et al. [175]
advanced this research a step further by comparing relative depth judgments for floating targets with
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cast shadows to grounded targets without shadows. However, because Hertel and colleagues did not
include a condition where objects were rendered on the ground with a shadow, as well, it is impossible
to interpret the relationship between cast shadow and height in the visual field with this study alone.
We hope to address this gap in literature with our distance estimation studies in Chapter 6.

Shadows in Video See-through AR

Unlike OST AR devices, VST head-mounted displays are immersive augmented reality devices that
benefit from the ability to use traditional shadow shading techniques for rendering since they are able
to render dark color values [49]. Accordingly, most of the research investigating shadow rendering has
focused on estimating lighting information from real world scenes so produce more realistic alignment
between real and virtual lights. This line of research is especially prominent in mobile AR [37, 156].
Perhaps not surprisingly, much of the research on rendering in VST AR has been conducted in mobile
AR displays as opposed to VSTHMDs, which may be attributed to the ubiquity of mobile devices.
Research conducted in mobile VST displays has evaluated how the presence of shadows and other

monocular cues affect a viewer’s depth perception [47, 100, 104]. The findings of this research encour-
age the pursuit of using monocular cues to improve depth perception in AR [47, 100, 104]. However,
it may be that not all of these findings transfer to immersive VSTHMDs since the afforded depth cues
are different. For example, HMDs provide stereoscopic viewing. Given the dearth of research on ren-
dering in VST AR that evaluate how lighting information affects people’s perception of space, we be-
lieve our research will provide valuable groundwork for future research in this area.
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There are two ways of spreading light: to be the
candle or the mirror that receives it.

EdithWharton

3 Foundations for Vision Impairment

Understanding how visually impaired individuals interact with their surroundings is essential for de-
signing accessible applications in mixed reality. In general, accessible products benefit all users—even
those without disabilities. For example, closed captions, which were initially designed to allow those
with hearing impairments to understand videos on television, are also beneficial viewers who want
watch media in noisy environments and for viewers who require translated subtitles to enjoy media in a
non-native language. Likewise, in the current work, understanding how graphics in MR affects percep-
tion and interaction for visually impaired individuals, may also help developers design more effective
solutions for people with healthy vision.
Mixed reality, if designed properly, is well poised to help individuals with accessibility needs. Aug-

mented reality may visually enhance surroundings or supplement visual information with 3D audio
cues for those with visual impairments [317]. And virtual reality may provide closed captions for those
who are deaf or even simply distracted. However, at present most MR applications are not designed
with accessibility in mind [322]. Even though accessibility criteria have developed in recent years for
2D technology [388], it can be difficult for developers to comprehend how their design decisions affect
people with accessibility needs in immersive media. How to best render visual information for those
with visual impairments, for example, is an open area of research [517].
Inaccessibility precludes a more diverse and interesting audience for MR applications. If immersive

technology is to commercially succeed, this accessibility problemmust be resolved. Accurate spatial
perception may be especially important for assistive technologies that are designed to help individu-
als navigate space in mixed reality. Virtual reality can allow those with mobility issues to explore. For
those with vision impairments, mixed reality applications may enhance the visual images of a person’s
surroundings or supplement visual information with spatialized audio. For those with hearing impair-
ments, augmented reality applications may provide closed captions so they are note excluded from ver-
bal conversation.
The domain of assistive technologies, in which devices help individuals perform everyday tasks, and

accessible technologies, in which devices are inherently designed to include the widest audience pos-
sible, can seem daunting as there are many forms of sensory impairments that can affect how people
interact with technology. Therefore, in the current thesis, we focus exclusively on visual impairments.
And in our coverage of foundations for designing accessible technology for mixed reality, we will dis-
cuss vision impairments, how vision impairments can affect interactions, how vision impairments may
be simulated to allow normally-sighted individuals to better design for these populations, and even the
limitations of disability simulations for vision impairments. In covering these topics, we hope to not
only inform the reader about essential background information for the current thesis but to also pro-
vide the reader with insights that will allow them to promote accessibility in their own work.
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3.1 Vision Impairment

Visual impairments are often the result of scotomas—or a blind spots in one’s visual field. Scotomas
vary in size, intensity, number, and placement within a person’s visual field. As such, low vision condi-
tions are heterogeneous and vary widely between conditions and even between patients with the same
condition. Two of the most common types of visual field loss that can affect people’s vision are: central
and peripheral field loss.
The most common eye diseases that result in peripheral vision loss are glaucoma and retinal detach-

ment. Macular degeneration is a medical condition that primarily affects older populations and re-
sults in vision loss to the center of the visual field. This loss is due to the deterioration of the macula,
which lies near the center of the eye’s retina. The resulting degradation of visual acuity, or scotoma,
may present itself as a partial vision loss or complete occlusion. Clear central vision is essential for ob-
serving fine detail, and central vision deficits affect performance in daily activities such as reading and
walking [113, 168]. At present macular degeneration accounts for 8.7% of all blindness worldwide and
is the most common cause of blindness in developed countries [506]. Alarmingly, the number of peo-
ple worldwide with age-related macular degeneration alone is projected to rise to 196million by 2020,
advancing to 288million by 2040.

3.1.1 Vision impairment affects perception
An estimated 3.2 million Americans are diagnosed with low vision, in which vision is impaired to the
degree that it cannot be corrected with glasses alone [475]. Visual impairments may interfere with one’s
ability to interpret visual information, making many everyday tasks challenging. For example, central
field loss, which is caused by diseases like age-related macular generation, can affect one’s ability to read.
While peripheral vision loss, which may be caused by glaucoma or retinal detachment, can affect one’s
ability to drive. Tasks like driving may even become dangerous.
Geruschat et al. [142] found that macular degeneration patients appear to have different gaze be-

havior in comparison to fully-sighted people during high-risk activities. In a traffic crossing study, Ger-
uschat and colleagues [141] then compared traffic gap detection among pedestrians with normal vision,
central vision loss, and peripheral vision loss. While their results suggested that all groups could identify
crossable and uncrossable gaps accurately, there was a significant effect of low vision in measures of la-
tency and safety. The study also found that decisions at the exit lane of a roundabout are more difficult
than those at then entry lane. These experiments, done in the real world at an uncontrolled intersection
with a handheld trigger as the indicator of deciding to cross are best viewed as complementary to the
current work, which evaluates human behavior in virtual and augmented environments.

3.1.2 Studying vision impairment in MR
Virtual Reality provides an effective medium for the study of human behavior. The appeal of this tech-
nology lies in its capacity to control environmental factors. VR also finds applications in research where
conducting an experiment may be too dangerous or infeasible for real-world execution.
For example, VR has been used to investigate pedestrian behavior at intersections [46, 312, 321,

421]. Real traffic scenarios present unnecessary risk to participants and are difficult to control with
accuracy. For the visually impaired and other vulnerable populations, the ability of pedestrians to make
street-crossing decisions may be compromised, resulting in unsafe decision making at these special
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crossroads. This concern is motivated by real-world studies [19, 162, 163], which have established that
blind individuals make poor gap judgments at traffic roundabouts. Accordingly, these populations
have been of interest for behavioral analysis within the domain of pedestrian safety.
Hassan et al. [167] compared normally sighted, visually impaired, and blind pedestrians’ street cross-

ing decisions, and found that visually impaired participants’ performance was as accurate and reliable
as normally sighted participants. Unsurprisingly, blind pedestrians were the least accurate in mak-
ing street crossing decisions. Hassan et al. [169] continued this investigation among elderly people
with macular degeneration, elderly people with normal vision, and young normally sighted pedestri-
ans. Again, no significant differences were found between macular degeneration and age-matched,
normally-sighted pedestrians in street crossing decisions. However, the study found a risky tendency
for macular degeneration pedestrians to make unsafe street-crossing decisions
The use of virtual reality in this work was critical. Virtual reality provides an environment in which

a dangerous scenario— traffic crossing with visual impairment— can be investigated in a controlled
and rigorous manner. Testing subjects with true visual impairment in true traffic situations is difficult,
and some form of proxy is often used. For example, Geruschat et al. [141] used subjects with actual
macular degeneration or peripheral vision loss at a live intersection with real traffic, but had them press
triggers to indicate when they would cross rather than actually cross. In contrast, a VR study like the
ones conducted byWu et al. [511, 512] has considerably easier recruitment, ease of execution, no real
danger, and can allow actual locomotion. This suggests that VRmay be an beneficial tool to design and
conduct effective research in perception and action for those with vision impairments.
To illustrate howmixed reality can be used to improve the lives of those with vision impairments in

this section we focus a specific case: traffic crossing evaluations. However, traffic crossings provide only
one example of mixed reality may be used to understand and design better, safer experiences for those
with vision disabilities.

3.2 Vision Impairment Simulation

If developers are to design accessible products that people with disabilities can use, then they must un-
derstand how affected populations interact with their surroundings. Disability simulations allow in-
dividuals to experience what it is like to have a specific impairment. These simulations are not only in-
formative for product and application design, but they can also help caregivers or medical professionals
better understand the needs of those whom they care for.
Mixed reality provides a particularly unique opportunity for disability simulation. WithinMR peo-

ple may experience firsthand how specific disabilities, like visual impairments, affect the strategies that
one employs to interact with their surroundings. With virtual reality, we may better understand how
people with low vision or simulated low vision navigate hazardous situations, such as road crossings,
to ensure that these spaces are designed with safety in mind [512]. And with augmented reality low vi-
sion simulations, we may evaluate how those with visual impairments interact with physical products
to ensure that they are accessible to the widest audience possible. Figures 3.1 - 3.3 display an example of
simulated vision impairment applied to a street-crossing scenario in VR.
Some immersive low vision simulations already exist. However, most are based on simplified symp-

toms of eye diseases [496] and are unable to produce the irregular scotomas that individuals experience
in reality. Even fewer of these simulations have been implemented with eye tracking [244, 512]. Yet the
biggest obstacle for the adoption of immersive low vision simulations for design may be that there are
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Figure 3.1: View of street‐crossing
without vision loss [512]

Figure 3.2: Virtual roundabout [512] Figure 3.3: View of street‐crossing
with vision loss [512]

no rigorous evaluations of their efficacy. In short, there are no complete, empirical studies that evaluate
the ability of low vision simulations to replicate the impairments of those with low vision. This dearth
of evaluations is likely due in part to the low latency demands of eye-trackers for effectively simulating
low vision and to the difficulty of recruiting a sufficient number of people with visual impairments
for system evaluations. As a result, most researchers have either only been able to conduct preliminary
analyses [244, 496] or they have focused on applying their simulation to applications [512].
Virtual reality has been applied to simulate visual impairments for medical training and education

purposes, as well. These simulations provide first-person experiences for medical professionals to bet-
ter understand the daily difficulties encountered by patients. Ai et al. [7] and Jin et al. [210] simulated
various forms of eye diseases in the context of a virtual apartment and received positive user response.
They simulated macular degeneration through the application of an opacity mask and a wavy mask.
Banks et al. [30] created a similar, specialized visual eye disease simulator for architects to view their
designs through the perspective of a visually impaired onlooker. This work provides engineers with a
better understanding of how to design public spaces for better accessibility and easier navigation. In the
study presented by Lewis et al. [270], a Gaussian blur and distortion shader were applied to simulate
macular degeneration. They also conducted an effectiveness test, which showed that using their visual
impairment simulator improved users’ understanding of visual impairments in general. Expanding the
virtual microcosm, Vayrynen et al. [477] designed a navigation task amidst a city environment that al-
lowed for participants to experience various visual impairments such as macular degeneration, cataracts,
glaucoma, and myopia in a dynamic setting.
In augmented reality, various types and levels of visual impairment have also been simulated. Through

the coupling of head-mounted displays and stereoscopic cameras, Ates et al. [21] andWerfel et al. [496]
produced simulation tools to generate experiences using real-time video feedback. Both developments
focus primarily on user experience, invoked empathy, and understanding as metrics for evaluation.
While most studies recreate computational estimations of low vision experiences, an assessment tool
was designed by Pamplona et al. [354] to capture retinal information from a high-contrast light-field
display. Although this information is not displayed in real-time, it is able to create an accurate depic-
tion of the visual occlusion experienced by a participating subject. Still, at present there are no rigorous,
empirical evaluations of the efficacy of these immersive low vision simulations as compared to real low
vision patients.

31



3.2 Vision Impairment Simulation

3.2.1 Analog simulation
Simulating vision impairments does not always require complex solutions. In fact, many experiments
that evaluate the influence of visual acuity and restricted field of view on people’s perception of space
to date have relied on analog solutions. Often these simulations rely on degraded-vision goggles, such
as googles with theatrical lighting gel applied [383, 384, 460, 519] or welding goggles in which field of
view is restricted by cutting out a hole in black cardstock [33, 34].
A common approach for simulating loss in visual acuity is to use Bangerter occlusion foils (Ryser

Optik, St. Gallen, Switzerland) Although Bangerter foils were originally designed to treat conditions
like amblyopia (aka lazy eye), they have proven useful for simulating degraded visual acuity as well as
contrast sensitivity [342, 366]. As such, they have been employed to simulate low vision in a number of
studies [111, 266–268, 461]. Tarampi et al. [460] further demonstrated that certain types of theatrical
filters can successfully decouple visual acuity loss from contrast sensitivity loss when visual acuity alone
is of interest for simulation. Although several physical materials have been evaluated for recreating de-
graded visual acuity, there is a finite supply of possible materials to employ and the evaluation of these
materials can be difficult.
Another challenge of analog simulations is appropriately restricting FOV—an issue which is can-

didly discussed in Legge et al. [266]—due to the problem of binocular overlap. As such, much of the
prior research investigating the influence of visual field restrictions using analog approaches has been
conducted with monocular rather than binocular viewing [33, 34, 266]. Monocular viewing is some-
times desired, like in the studies conducted by Rand et al. [383, 384]. In these studies, Rand and col-
leagues studied how depth judgments to targets were influenced by the visible horizon and by ground
contact when visual acuity was degraded. The authors argued that binocular viewing was undesirable
since it would introduce additional depth information that was not of interest for their evaluation.
The analog solutions for visual field loss discussed thus far have two limitations. They are unable

to produce binocular visual field restrictions, a case which is more representative of real low vision pa-
tients’ vision, and they are unable to connect FOV restrictions to eye movements. Instead, they rely on
head-based FOV restrictions, which are a less accurate representation of visual field loss.

3.2.2 Digital simulation
The development of digital simulations for vision impairments has progressed in conjunction with
technological improvements in computer graphics, displays, and eye tracking. Due in part to the rapid
advancement of technology, most research publications on digital vision simulations describe system
details and propose algorithms but few have sought to evaluate the efficacy of their systems to repro-
duce the perceptions and actions of those with real vision impairments.
Algorithms for accurate simulations of human vision began to emerge in the field of image process-

ing in the 1990s. Initial investigations began with investigations of whether properties of human vision
could be recreated in digital images. For example, Peli and colleagues used simulation to evaluate com-
putational models for foveal vision [362] as well as peripheral vision [363]. Accordingly, much of this
initial work focused on the development of image processing techniques to represent aspects of human
vision and vision impairment.
In 2002 Perry and Geisler [367] proposed a system in which Goldmann perimeter data could be used

to display scotomas over video images. Banks andMcCrindle [30] then described how image process-
ing techniques could be used to emulate the visual characteristics of vision impairments. They list a
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number of eye effects that required simulation for effective modeling of impairments, including blur,
opacity, color manipulations and more. Hogervorst and van Damme [182] then constructed their own
simulation method for low vision by applying non-patient specific scotomas and glares to images.
A limitation to early proposed digital simulations is that they did not work in real time with eye

tracking due to technical limitations of the time. Even so, researchers developed other ways to approx-
imate people’s eye position. Mankoff et al. [300] rendered opaque mask overlays relative to a mouse’s
position to simulate scotomas on desktop monitors. Vinnikov et al. [484] then developed a gaze con-
tingent system to estimate real-time gaze direction on desktop monitors. However, gaze tracking in
their system was limited to large head movements.
As external eye trackers improved in accuracy, researchers began to evaluate the effect of scotomas

on people’s perception in virtual desktop environments. Kwon and colleagues evaluated the influence
of a simulated central scotoma (a circular opacity that subtended about 10° visual angle) in normally
sighted individual’s ability to perform visual search tasks in static images using an eye tracker mounted
to a desktop monitor [252, 253]. They found that image enhancements improved search time and ac-
curacy in older but not younger adults with simulated scotomas [253] and they revealed that people
rapidly adopted a peripheral locus for fixation when their central vision was occluded by a simulated
central scotoma [252].
Regrettably, even though desktop simulations are able to render vision impairments in real time,

few empirical evaluations of these systems have been conducted [57, 252, 269, 270]. Kwon et al. [252],
which compared visual search and chase task performance between simulated central scotomas and
normally-sighted controls, is a notable exception. In their experiment, they found that oculomotor
control with peripheral vision could be as precise and accurate as that with central vision when explicit
training was conducted to compensate for simulated central vision loss. Although Lewis and colleagues
[269, 270]. did not perform an assessment of people’s behavior in their desktop vision impairment,
they conducted user experience evaluations with expert reviewers (e.g., opticians and a visually im-
paired consultant) using pre-post questionnaires. Further, people’s behavior with simulated vision
impairments were not compared against real patients with real vision impairments in any of the men-
tioned evaluations.

3.2.3 MRHMD simulation
Amajor appeal to simulating vision impairments in MR head-mounted displays is that they can pro-
vide an immersive experience of what someone with vision impairment experiences. Another potential
benefit of HMDs is that they can integrate eye-tracking into their simulations to create more accurate
representations of visual field restrictions. However, performing accurate eye tracking within the dark
chassis of an HMD is a non-trivial task. Unlike the eye trackers employed with desktop virtual environ-
ments, eye tracking cameras integrated within the chassis of an HMD are surrounded in darkness and
they can be jostled when head movements are executed [280]. These environmental factors can inter-
fere with a camera’s ability to quickly and accurately detect a user’s eye position. However, both speed
and accuracy are important for tracking eye movements.
Saccades—which are rapid eye movements between fixation points—can encapsulate a wide range

of eye movement distances and durations. For example, their extent can measure less than a degree in
visual angle and as large as 90 degrees visual angle [170, 200, 265]. Saccade durations similarly encap-
sulate a wide range of values, and they can be greater than 100 ms for large saccades [43, 143]. More
subtle eye movements, like the saccades one executes when reading, can be as fast as 20 to 40 millisec-
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onds [387]. The speed of saccades and other eye movements has ramifications for howmuch delay is
tolerable in gaze-contingent displays. For example, prior research on the influence of latencies in gaze-
contingent displays has shown that delays greater than 45 ms may disrupt fixation behavior [286].
However, the degree of eye tracking latency that is detectable to a viewer is also related to where it oc-
curs within a person’s visual field. To seamlessly mask central vision eye tracking experiments have pro-
vided evidence that a system’s latency should be less than 25 ms to take advantage of vision suppression
during eye movements [308, 399, 423]. In contrast, latencies up to 60 ms are often not detected out-
side of central vision [287].
In recent assessments of eye tracking in the HTCVive Pro Eye—a commercial MRHMD released

in 2019—Sipatchin et al. [430] evaluated the temporal precision of its eye tracking to be approximately
58.1 ms. Stein et al. [439] then conducted an evaluation of eye tracking latencies across multiple com-
mercial VRHMDS, including the HTCVive Pro Eye, the Fove0, and the Varjo XR-1. In their evalua-
tion, they found that the eye tracking latency of the HTCVive Pro Eye was significantly worse than the
other two systems with an eye tracking delay of 50 ms. Both research groups argued that the eye track-
ing latencies shown in this display were problematic for gaze-contingent MR—an argument which is
supported by prior research on eye tracking latency [286, 406]. Stein et al.’s eye tracking assessment
determined approximate eye tracking delays of 35 ms in the Varjo VR-1 and 15 ms in the Fove-0. The
authors argue that the latencies exhibited by the Fove-0 and Varjo VR-1 may be more suitable for gaze-
contingent experiments [287].
In regard to vision impairment simulation, Sipatchin et al. [430] explain that a system that exhibits

notable eye tracking delay (e.g., a 58.1 ms delay) may be able to simulate peripheral field loss but simu-
lating central visual field loss would require improvements. A smaller latency is required for manipula-
tions of central vision like the ones employed to simulate central field loss since latencies that are longer
than saccade durations can dissociate the scotoma from a person’s true eye position [406]. In behav-
ioral assessments of vision simulations, this can result in participants “peeking” around scotomas [430],
which can interfere with experimental control.
Using the HTCVive Pro Eye, Krösl et al. published a series of investigations into how specific vision

impairments may be simulated with eye tracking in virtual environments. In their initial system, Krös-
land colleagues [241] modeled reduced visual acuity and they evaluated its impact on people’s ability to
assess maximum recognition distances (MRD) of escape-route signs. They then extended their system
to create eye-tracked simulation of cataracts—called ICthroughVR [243]—and they again evaluated
people’s ability to assess MRDs of escape-route signs. In both studies they found that the presence of
simulated vision impairments, in this case for reduced visual acuity and cataracts, negatively affected
people’s ability to correctly assess MRDs. Although eye tracking latency was not measured, the authors
comment that their proof-of-concept eye-tracking integration exhibited noticeable lag. They also re-
ported more errors when participants wore glasses.
Direct evaluations between those with vision impairments and those with equivalent simulated im-

pairments can be difficult and is often not possible. However, when vision impairment is correctable
via surgery, as is the case with cataracts, direct comparisons can be done. Accordingly, Krösl et al. [244].
conducted a pilot assessment in which five cataract patients were able to provide feedback about how
accurately the simulation represented their cataract condition. With one eye corrected and one eye still
affected by cataracts, participants were able to view either the simulated cataract or their corrected vi-
sion in one eye. The authors recruited five participants with cataracts to participate in the evaluation
of their vision impairment simulation system (the CatARact system), which was a notably improved
version of their original cataract simulation system (ICthroughVR) [243]. The updated system also
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permitted video see-through AR experiences. The qualitative feedback acquired from Krösland col-
league’s assessment stressed the importance of representing the heterogeneous and diverse symptoms of
vision impairments for an accurate simulation of cataracts.
Using the Fove-0, Jones et al. [215, 216] developed the Open VisSim to simulate vision impairments

with eye tracking in VR. They also extended their system to AR by deploying their software in a modi-
fied HTCVive that was integrated with Tobii eye-tracking [216]. A ZedMini stereoscopic camera was
affixed to the front of the display to provide video feed input for AR. The Open VisSim produces vi-
sual blur, spatial distortions, and color vision deficits with eye tracking. It also provided support for a
data-driven approach for producing visual field restrictions via perimetry data like the system proposed
by Perry and Geisler [367]. However, they describe their system as one that runs in “near real time”, in-
dicating that the current version of their systemmay suffer from inaccuracies or temporal delays. The
actual accuracy of vision tracking in their system is not reported. Although eye tracking latency was not
explicitly measured, both Krösl et al. [243, 244] and Jones et al. [215, 216] noted latency issues in their
systems.

3.2.4 Limitations
There are limitations to what these simulations can elicit. For example, they cannot emulate the adap-
tive strategies that those with disabilities have learned to employ over time nor can they recreate socio-
historical context that those with disabilities experience. Disability simulations are invaluable design
tools, but they are no substitute for input from real individuals with disabilities [469]. As such, disabil-
ity simulations can provide invaluable tools for expediting the design process for accessible applications,
but before a product is released developers should consider consulting real individuals with vision im-
pairments for feedback.
Further, due to the difficulties of integrating eye tracking into head-mounted displays, many of

the HMD-based systems for vision impairment simulations to date do not use eye tracking in their
solutions [21, 103, 241, 293, 446, 477, 496]. Even when vision impairment simulations have been
adopted for use in head-mountedMR displays, many of these publications focused on describing tech-
nical systems while forgoing evaluations [21, 215, 242] or while conducting only informal evaluations
[103, 430, 446, 496] Although these system descriptions are important for the development and im-
provement of technical solutions for simulating vision impairments, evaluations of their efficacy are
needed for confident adoption inMRHMDs. Some evaluations have been conducted with normally
sighted individuals alone in which participants experience normal vision and simulated vision impair-
ments [216, 241, 243, 477]. However, to the author’s knowledge, Krösl et al. [244] is the only HMD-
based simulation that has evaluated vision impairment with real patients. Krösl et al.’s work specifically
evaluated the how a single vision impairment, cataracts, could be simulated.

3.3 Perception of Visual Space with Vision Impairment

A notable amount of research has been directed towards understanding the influence of vision impair-
ment of view on people’s ability to perceive space. An inability to correctly perceive space can also pose
risks to populations with low vision. For example, vision impairment is associated with an increased
risk of falls in elderly patients with low vision conditions [285, 404]. In a study of 148 older individuals
(aged 63 to 90), Lord et al. [285] found that impaired depth perception, contrast sensitivity, and low-
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contrast visual acuity were the strongest risk factors for reported falls over a 12 month period. They
conclude that adequate depth perception is an important factor for detecting hazards and maintaining
balance in an environment.
In the following section, we discuss how prior research has evaluated the influence of visual acuity,

peripheral visual field loss, and central visual field loss on people’s depth perception using both real and
simulated vision impairments.

3.3.1 Visual acuity loss
Loss of visual acuity can interfere with people’s ability to correctly perceive the position of objects in
space. For example, the appearance of everyday surfaces like steps and ramps along a sidewalk can be
obscured. In a study evaluating the ability of people with simulated visual blur to detect steps and
ramps, Legge et al. [268] found that visible edge contours in an environment were influenced by visual
perspective. The authors found that participants were more easily able to identify steps up as opposed
to steps down due to differences in luminance contrast between the riser of a step and its contiguous
surface planes [268]. In addition, the height of the element in the visual field influenced people’s ability
to correctly identify these surfaces in space. The bounding contour between the far edge of the target
(the top of a step or ramp) and the wall behind it played an important role in determining whether the
ramps and steps were positioned up or down. Bochsler et al. [53] later extended this work to real low
vision patients. They found that people with simulated visual acuity and people with low vision made
similar responses.
Because the distal horizon as well as the height of an object relative to the ground influences depth

perception judgements [314, 315], an inability to correctly register ground surface information can in-
terfere with an individual’s ability to correctly judge distances to targets.This problem is related to the
horizon-distance relation suggested by Sedgwick [417], in which the visual system utilizes the angle of
declination from a line-of-sight parallel to a target located relative to the ground plane in order to deter-
mine absolute distances. Support for the horizon-distance relation has been found through empirical
studies in which the appearance of the horizon was manipulated. For example, Meng et al. [314, 315]
demonstrated that when the horizon is artificially raised, angle of declination increases, and distances
are overestimated. Similarly, Rand et al. [384] demonstrated that, even when visual acuity is artificially
degraded with vision goggles, people are able to make accurate distance judgments to targets along the
ground in action space (2m -30m) using architectural features within a space. However, participants
overestimated distances to targets when the position of the horizon was artificially manipulated [384].
In follow-up work, Rand and colleagues [383] tested people’s distance judgements to targets po-

sitioned both on and above the ground. Although distance judgements remained accurate under re-
duced visual acuity when an object was positioned above the ground on top of a visually detectable
stand (a stand with high color contrast against the background), distance judgements to targets on an
undetectable stand (a stand with high color contrast against the background) were judged as farther
away. This response pattern is in line with prior research which stresses the importance of surfaces and
surface contact for determining distances to targets in space [332, 352]. The overestimation of distances
in this work is explained by the absence of visual information about surface contact to link objects in
space to nearby surfaces. In the absence of surface contact cues, people rely on optical contact to deter-
mine the position of an object in space [333, 352, 397], where optical contact refers to the location at
which the projected image of an object contacts the image of the ground beneath it. As a result, targets
positioned above the ground appear to be on the ground but farther away rather than floating. This
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concept is intimately related to Gibson’s ground theory of spatial perception, which we discussed in
Section 2.3.1.
Rand et al. then conducted a second study in which floating targets were positioned at various heights

in the visual field, relative to the horizon [383]. When objects were positioned above the horizon, they
were perceived as larger in size than either targets placed on the ground or targets placed above the
ground below the horizon. Because all targets were of the same size and all targets were positioned at
the same distance from the viewer, these results suggest that participants perceived floating targets to be
farther away when they were located above the visible horizon. The authors argue that size is an indirect
measure of distance, following the size-distance invariance hypothesis (SDIH) [147, 230].
Because the position of objects relative to the horizon can perturb distance judgements to targets in

space when vision is artificially degraded [383, 384], special attention to how virtual objects are con-
nected to nearby surfaces when they are floating may be necessary for ensuring accurate spatial per-
ception for people with low vision inMR displays. This is further reinforced by prior research, which
has shown that normally-sighted individuals perceive floating targets as farther away in AR [397]. Al-
though the presence of shadows, which provide a powerful cue for connecting objects to nearby sur-
faces, [2, 5, 295, 467] can help improve distance judgements to floating targets in AR (Section 6). It
may be necessary to use graphics with higher contrast to ensure shadows are visible, since people with
reduced visual acuity are unable to leverage visible cues that connect targets to the ground when they
are not visible [384]

3.3.2 Visual field loss
Artificially restricting an individuals’ visual field is a strategy that has been applied to understand hu-
man perception in contexts outside the study of vision loss. Field of view restrictions have been used to
provide experimental control for the study of visual space perception [95, 509, 510] and to better un-
derstand how visual field restrictions caused by virtual and augmented reality HMDs influences depth
perception [64, 95, 212, 233, 501]. The majority of this research has investigated peripheral visual field
loss.

Peripheral Field Loss

To determine how people use ground surface information to accurately perceive distances, Wu et al.
[510] manipulated people’s peripheral field of view and head motion. In their first two experiments,
they found that distances were underestimated when peripheral field of view was reduced to 21.28◦ x
21.28◦ and 13.98.28◦ x 13.98◦ and head motion was prevented. In their third experiment, they evaluated
people’s distance judgements when either horizontal or vertical field of view was variably restricted and
head movement was prevented. They found that when vertical field extents were reduced to values less
than approximately 21◦, distances were underestimated. However, horizontal restrictions did not result
in significantly different judgements from their control condition, which permitted full view.
The authors argued that the results of the experiments underscore the importance of near ground

information for accurate distance judgements [144, 418]. Finally, to better understand the role of near-
ground (<2m) and far-ground information, Wu and colleagues [510] evaluated blind walking distance
judgements when near-to-far and far-to-near head movements were permitted. While near-to-far scan-
ning remained accurate, far-to-near scanning resulted in distance underestimation. The results of the
experiments conducted byWu and colleagues [510] underscore the importance of near ground infor-
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mation for accurate distance judgements. Wu and colleagues argue that the visual near-ground pro-
vides a valuable anchor for the construction of accurate visual representations of space, an argument
that is consistent with related research that has shown the ground is used as a frame of reference when
judging absolute distances [95, 427].
In related work, Creem-Regher et al. [95] found that restricting a person’s view of their own body

and the floor beneath them (out to approximately 1.5m) did not result in different distance judgments
as measured through blind walking. However, when they evaluated the influence of head motion when
field of view was restricted, they found that distance estimation performance with a virtual field that
was restricted to approximately 38◦ x 32◦ did not differ from their control (a full visual field condition)
when head rotation was permitted. Restricting head motion and field of view, however, led to distance
underestimation. This finding is particularly interesting when compared to similar research in which
occlusions of portions of the ground surface between a viewer and a target in space resulted in ego-
centric distance underestimation [171, 314, 509]. These conflicting results may be evidence for more
complex processing of visual information for distance judgments.
In assessments or distance perception where participants are permitted to locomote and extensively

view targets without restricted head motion, differences in distance estimation responses between those
with normal vision and those with restricted peripheral vision do not always occur [126]. In such eval-
uations, researchers have argued that people may learn to compensate for any distance compression
effects incurred by loss of peripheral vision [510].

Central Field Loss

The majority of the research discussed thus far evaluates the influence of peripheral field restrictions on
people’s ability to accurately perceive space. Further, unlike in the case of peripheral field loss research,
much of the prior research conducted to understand the influence of central field loss on people’s spa-
tial perception has been conducted with indirect measures of distance judgments, such as grasping
[111, 355, 482], traffic crossing[141, 169], and fall risk [285, 489].
Prior research has argued that low vision conditions, especially conditions that cause central vision

loss, adversely affect depth perception by interfering with stereopsis [71, 482]. Stereopsis is a particu-
larly important depth cue for judgements of distances in near space (< 2 meters) [451, 452]. In a study
evaluating low vision patients’ grasping judgments to targets, Melmoth et al [313] found that without
binocular stereo vision, participants made less accurate grasp selection and they were more likely to rely
on nonvisual information. Verghese et al. [482] then conducted a similar study in which patients with
central field loss were less accurate at grasping targets when stereopsis was impaired. These assessments
are informative for understanding how people with central field loss perceive depth at near distances
but open questions remain regarding how people with central field loss perceive distances at farther
distances.
Vision simulation can be helpful for studying the influence of central scotomas on depth perception.

However, due to the difficulties of simulating central scotomas (See Section 3.2, less research has been
conducted to understand how central field loss affects people’s perception of space when central field
loss is simulated.
Some work in VRHMDs has been conducted with simulated macular degeneration conditions in

road crossing scenarios. Wu et al. [512] simulated a central scotoma represented by opacity and blur
to study how central field loss affected people’s ability to detect gaps in traffic when crossing the street.
In their study they found the people with large, central visual scotomas simulated scotomas (approxi-
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mately 20 − 40◦ in this study) selected longer gaps between vehicles in traffic and they waited longer
to initiate crossings. This response pattern is similar to what has been observed in real patients with
macular degeneration in traffic crossing scenarios [141, 169].
Some work studying the influence of simulated central scotomas has been conducted using desktop

virtual environments. However, these experiments focused on how simulated vision impairments in-
fluenced visual search performance. Kwon et al [252, 253] used circular disks that covered about 10◦
visual angle to understand how individuals with macular degeneration performed visual search. Inter-
estingly, they found that when individuals were exposed to central vision impairments, they quickly
learned to compensate for this vision loss by adopting a peripheral locus for fixation when performing
visual search. Further, participants with central field loss in Kwon et al. [252] were able to perform the
task as accurately as those with unobstructed central vision with training.
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Part III

Surface Contact Perception



Shadows appear to me to be of supreme importance
in perspective, because, without them opaque and
solid bodies will be ill-defined

Leonardo da Vinci

4 Surface Contact Perception inMR

In this chapter we briefly review the theoretical motivation behind our decision to investigate shadows’
influence on surface contact perception across virtual and augmented reality displays (Aim 1). Because
visual space is not defined by arrays of objects in empty air—but by the layout of surfaces, sets of ad-
joined surfaces, and entities that are arranged in relation to surfaces [145, 146]—some visual element
must exist that connects objects to surfaces in space. Shadows naturally, yet often subtly, accomplish
this important task. However, in immersive technology we do not yet know howmuch the shadows
rendered by virtual and augmented reality displays must match those observed in reality for accurate
spatial perception.

4.1 Motivation and Goals

A common complaint from users of augmented reality technology is that virtual objects appear to
“float” within real world scenes. A detached—or “floaty”—appearance is a strong indicator that the
depth cues provided by virtual stimuli are insufficient to accurately locate the stimulus’ position within
a real world environment. Given that the human visual system integrates information from a variety
of cues to interpret depth, the presence of unreliable depth cues can cause unstable depth perception
when these cues are not combined in a consistent manner [114, 257]. Drascic andMilgram [107] as
well as Adams [1] have pointed to cue conflicts as a potential factor contributing to inaccurate depth
perception in augmented reality.
All visual information is produced by structured patterns of light and shadow. As such, one of the

most salient visual cues for the layout of objects within a scene is the cast shadow [297]. Cast shadows
may be defined as holes in light that occur when an opaque or semiopaque object blocks the light that
falls onto a surface [76]. By providing relative position information between an object and the surface
upon which an object’s shadow rests, cast shadows provide important depth information in both the
real world [297, 514] and in augmented reality [255, 449]. As such, a significant body of work has been
conducted on how to best render shadows in graphical displays [279].
According to Gibson’s ground theory of space perception, one’s perception of space is defined by

the layout of surfaces, and the position of an object in space is defined by its relationship to surfaces
[145, 146]. Within this framework, cast shadows function as a “visual glue” to attach virtual objects to
surfaces [295, 467]. Furthermore, it has been demonstrated that people become more accurate when
estimating egocentric distances to objects placed above the ground when they are clearly connected to
the ground via shadow [333]. However, it is unclear how to best create this visual glue for augmented
reality devices, especially for those devices that rely on additive light displays such as optical see-through
devices. Given that this type of AR display cannot remove light—and thereby darken—virtual or real
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Figure 4.1: A VR HMD with VST capabilities: the HTC
Vive Pro with mounted Zed Mini camera

Figure 4.2: An OST HMD: the Microsoft HoloLens
1.

objects, rendering shadows in these devices is a challenge. We are therefore also interested in assessing
how non-photorealistic shadows (cf. [62, 485]) affect perceived visual glue and depth perception.
Recent work on optical see-through AR displays leverages the human visual system to create shad-

ows [203, 299]. These devices create the illusion of dark color values using simultaneous contrast il-
lusion, which approximates a shadow. Other methods have been used for video see-through AR dis-
plays [337], and shadow generation in virtual reality (VR) is considered mature [108, 433]. Nonethe-
less, for generally deployable MR applications, it would be desirable to have a clear and unified under-
standing of which techniques work across widely available technologies. Therefore, in the present work
we investigate how surface contact is affected by cast shadows across a set of display types.

4.2 GeneralMethods

In order to evaluate how shadow shading methods affect a viewer’s certainty in estimating ground con-
tact in head-mounted extended reality displays, we conducted four experiments across three unique
display conditions: an optical see-through augmented reality display, a video see-through augmented
reality display, and a virtual reality display. The subsequent sections discuss the technical setup of our
experiments (Section 4.2.1) as well as the specific solutions used for rendering shadows (Section 4.2.2)
and positioning virtual objects based on viewing angle (Section 4.2.3).

4.2.1 Materials
We employed three immersive HMDs for our investigations. We used the Microsoft HoloLens 1 for
our optical see-through display condition, and a wireless HTCVive Pro was used to render the vir-
tual reality scene. The same Vive Pro was used in conjunction with a ZedMini stereoscopic camera
for the video see-through display condition. Head tracking was used across all conditions to allow nat-
ural viewing of experimental stimuli. Applications for each device were developed in Unity version
2017.4.4f1 with the C# programming language.
TheMicrosoft HoloLens 1 has an approximate per eye resolution of 1268 × 720 and field of view

of 30◦ × 17◦. Although the augmented field of view (FOV) of the HoloLens is narrow, outside of this
viewing area users’ vision is not occluded by the device. This OST display relies on additive light to ren-
der images and is therefore unable to render black color values. For our experiments, position tracking
was performed using the HoloLens’ native inside-out tracking solution.
The virtual reality environment was rendered using a wireless HTCVive Pro, which has a maximum

per eye resolution of 1440 × 1600 and an approximate field of view of 110◦ × 113◦. Position tracking
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for this condition was performed using the Vive’s lighthouse tracking system. In addition, because this
condition relied on completely virtual imagery, a virtual model of the real world environment was cre-
ated. This model included photographed images of the real room along the walls and custom 3Dmod-
els designed to match the table and foam floor tiles present within the real world environment. An im-
age of the virtual environment can be seen in Figure 4.4. An image of the real world environment can
be seen in Figure 4.3.
The video see-through device also relied on the HTCVive Pro for rendering. However, it created

an augmented reality environment by combining virtual overlays with real time video footage, which
was captured using the ZedMini stereoscopic camera system. The ZedMini was affixed to the front of
the head-mounted display. The use of the ZedMini’s camera feed constricted the Vive’s resolution and
field of view to 1280 × 720 and 90◦ × 60◦, respectively. Position tracking was performed using the Zed
Mini’s inside-out tracking solution, which integrated with the HTCVive’s tracking system.
AnHTCVive tracking puck was used to position virtual target objects within the real world envi-

ronment for both the VST AR and VR conditions. At the start of an experiment and between each
experimental block, the tracking puck was placed near the viewer at predetermined positions in the
physical room, and virtual objects were rendered at the puck’s position virtually. Similarly, for the OST
AR system, this position calibration involved placing a virtual HoloLens spatial anchor at the same pre-
determined positions.
For the the VST AR and VR conditions, selections were performed using a wireless mouse. With the

Microsoft HoloLens, users selected inputs using the HoloLens’ clicker in Study 1. However, because a
two-alternative forced choice paradigm was used for Studies 2-4, inputs were performed with a mouse
for all three HMDs after Study 1. For all experiments, a gaze-directed paradigm was used to guide selec-
tions. A small gaze cursor appeared at the center of the user’s vision whenever their forward head orien-
tation pointed towards a user interface element within the HMDs. However, this cursor disappeared
when viewing target objects so as not to disrupt their vision when evaluating surface contact.

Figure 4.3: A participant views experimental stimuli in
the Microsoft HoloLens. The image marks the left (L)
and right (R) chairs as well as the three distance
conditions: 1m table, 1m floor, 3m floor.

Figure 4.4: A screenshot of the virtual environment
from the user’s perspective is displayed. A target object
is placed 1m away on a nearby table. The target is
rendered without a cast shadow.

4.2.2 Shadows
Shaders to render three distinct hard shadows were programmed using a variant of the HLSL language
that is compatible with the Unity game engine. A directional light was positioned so that a target ob-
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ject’s shadow would lie behind and to the right of the object. To accomplish this, the orientation of a
virtual, directional light was set to 141◦ along the x axis and−141◦ along the y axis. A depiction of the
three shadow conditions for each device in Study 1 can be seen in Figure 5.1. It should be noted that
the images displayed in the figure do not perfectly match those presented by the immersive HMDs
since there are display and capture differences. For example, the HoloLens screen capture relies on a
monocular video feed for image capture but the actual user only experiences AR through the stereo-
scopic optical see-through display.
The dark gray shadow condition represented the most traditional method. It rendered a dark color

value within the umbra of the shadow and therefore created a perceptually valid impression of a shadow
for most devices.
The white shading condition, which added white light to create a shadow instead of subtracted, rep-

resented a photometrically incorrect shadow. Accordingly, it was also the most perceptually incorrect,
or non-photorealistic, shading method included in this study.
The gradient shadow condition was designed as another perceptually correct method–especially

for OST devices, which are unable to render black. Our gradient shadowmethod used simultaneous
contrast to change the visual appearance of two adjacent colors and give the illusion of a dark shadow
by rendering light outside of the shadow’s umbra. In our method, the intensity of the light near the
edge of the umbra also gradually decreased as the distance from the shadow increases, which created a
gradient of light along the ground surface. Within the shadow’s umbra nothing was rendered.

Figure 4.5: Target objects in the above ground condition for Experiment 1 are positioned at three distances from
the user’s perspective. The white shadow, gradient shadow, and gray shadow conditions are displayed from left
to right.

4.2.3 Vertical displacement
For both studies, in order for participants to judge if targets were in contact with a surface, stimuli had
to be presented both on and slightly above the ground for discrimination. Because we evaluated surface
contact judgments across multiple distances, we displaced each target vertically based on viewing angle
to ensure fair comparisons across distances as much as possible. Participants also viewed stimuli while
seated throughout both experiments for consistency. The average eye height of the viewer was calcu-
lated by summing the average eye height of a person while seated (i.e., the distance from their bottom
to their eyes while seated) fromHarrison et al. [166] and the height of the seat of the chairs used in our
setup, which resulted in a value of 1.171 m for he. In both experiments, some or all stimuli were placed
on a table in front of the user (See Figure 4.3). For these conditions, he was adjusted to account for the
table by subtracting the table height (0.7461 m) from this value.
Using the average eye height of a viewer, denoted as he, and the distance to a given target, dt, we were

able to solve for a series of three triangles from which we could extract the degree of vertical displace-
ment, dv, for target objects placed above the ground. Eye height was calculated by adding the average
sitting eye height [166] to the height of the chair used in our study, which resulted in he = 1.171. In
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both experiments, when target objects were placed on a nearby table, instead of on the ground, we sub-
tracted our table height from this value to obtain he. The trigonometric formulas used for this calcula-
tion are shown in the equations below:

σ = tan−1

(
dt
he

)
+ ω (4.1)

dv =
(
tan(σ) he − dt

tan(σ)

)
(4.2)

For equations 4.1 and 4.2, ω represents the degree to which viewing angle was modified and σ rep-
resents the updated viewing angle to the vertically displaced target object. Figure 4.6 shows each vari-
able in context for clarity. In Study 1, a viewing angle of 0.3◦ (ω) was selected since it was the height at
which people could discern that an object was off the ground more than half the time during prelimi-
nary testing. Screenshots of experimental stimuli in the above ground condition can be seen in Figure
4.5. In Studies 2, 3, & 4 multiple vertical displacements were used.

Figure 4.6: Visual depiction of trigonometric solution for vertical displacement.
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Shadow is a colour as light is, but less brilliant;
light and shadow are only the relation of two tones.

Paul Cezanne

5 Investigating Surface Contact Perception inMR

In this chapter we begin our investigation into how the manner in which graphics are rendered can
influence one’s perception of space in mixed reality displays. Of particular interest in this chapter is
how realistic and non-photorealistic rendering methods depth perception (as evaluated through surface
contact perception). Although we began this work motivated by theories of cue integration [208, 256],
which suggest that more consistent, realistic visual depth information between virtual and real objects
will result in more accurate depth perception [1, 107, 245], our initial evaluation (Study 1) on shadow
rendering and surface contact perception provided evidence to the contrary.
Specifically, in our first investigation we found that people’s confidence ratings for surface contact

with a non-photorealistic rendering approach, in this case a white shadow, resulted in higher ratings
than any other condition in an optical see-through (OST) and a video see-through (VST) AR display.
Spurred by this curious experimental outcome, we conducted three followup investigations into the
influence of realistic and non-photorealistic rendering approaches on surface contact perception (Stud-
ies 2,3, & 4). The development and execution of this work motivated Aim 1 of this dissertation. Fur-
ther, it provided the groundwork for our future investigations into the influence of realistic and non-
photorealistic shadows on depth perception in persons with normal vision (Aim 2) and persons with
image impairments (Aim 3).
In our research we focus on evaluating a specific depth cue: cast shadows. Shadows function as ”vi-

sual glue” to create a point of contact between an object and nearby surfaces[295, 467]. Because cre-
ating connections between objects in space and surfaces within an environment is important for an
accurate perceptions of spatial layout and depth [144, 145], we focus our investigations on this depth
cue. For more discussion on the role of surfaces and the role of cast shadows in spatial perception, see
Section 2.3. Another reason we focus on cast shadows for these evaluations is that evaluating a specific
depth cue allows for better interpretations and comparisons of empirical results across the studies re-
ported within this dissertation.
Over four studies, my collaborators and I evaluate people’s sense of surface contact given both real-

istic and non-photorealistic shadow shading methods in OST AR, VST AR, and VR head-mounted
displays. We manipulate cast shadow shading, object shading, object geometry, and object orientation
to better understand what characteristics of virtual objects and their cast shadows influence the accu-
racy of surface contact perception. We also conduct our research across multiple HMDs to determine
what rendering guidelines would generalize across HMDs that use different approaches for rendering.
At the onset of this investigation, we anticipated that rendering approaches for cast shadows would
benefit surface contact judgments differently between OST AR, VST AR, and VR displays due to the
unique optical and graphical properties of each display type. Contrary to our expectations, surface con-
tact judgments in the two AR displays often benefited from the same, non-photorealistic rendering
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approach. This outcome encouraged the investigation of different rendering techniques across OST
AR and VST AR displays in our later investigations of egocentric depth perception in Aim 2 of the
dissertation (Chapter 6).
The results of our research encourage the use of non-photorealistic rendering approaches for cast

shadows to enhance surface contact judgments, which is an outcome that may prove beneficial for peo-
ple with vision impairments: a population that often benefits from high contrast imagery like that pro-
vided by the non-photorealistic cast shadow condition evaluated in these studies. This outcome also
contributed to the development of the final research aim of this dissertation (Aim 3) in which we evalu-
ate depth perception with real and simulated vision impairments.
The results of our investigations into surface contact perception have resulted in two publications.

The first, Adams et al. [5], covers material discussed in Studies 1 and 2. These experiments cover our
initial investigation into surface contact perception as well as our investigations into the influence of
how contrast between an object’s shading and the shading of its cast shadowmay have influenced our
initial research findings. The second paper, Adams et al. [2], covers material discussed in Studies 3 and
4. In these two evaluations we evaluate the effects of object geometry and orientation on people’s sur-
face contact judgements. Throughout these investigations of different object properties influence on
surface contact perception, we evaluated both realistic and non-photorealistic cast shadows.

5.1 Study 1 - The way shadows are rendered influences perception
of surface contact

In our first study, we evaluated how the manner in which we render shadows affected ground contact
perception across multiple distances. Furthermore, we evaluated stimuli in our first experiment across
multiple distances to ensure that any effects we found were due to our stimuli and not due to the use of
a specific viewing angle, since depth cues can vary in effectiveness depending on the distance of infor-
mation from the viewer [6, 96].
We anticipated that rendering shadows that were more consistent with the real world environment–

and therefore more perceptually valid–would improve ground contact perception in AR devices. Ac-
cordingly, in Study 1 (Section 5.1), we evaluated a variety of shadow shading methods, which included
both perceptually motivated methods and a photometrically incorrect shading method. Curiously, our
predictions were proven wrong and the photometrically incorrect shading method had the most pro-
nounced effect on people’s certainty when estimating ground contact in AR. Based on our previous
discussion of the importance of cast shadows as a cue for surface contact to inform depth perception,
we designed our first study to test several hypotheses:
H1: Since prior research has shown that cast shadows are an effective cue for establishing ground

contact, we anticipated that the presence of a shadow would significantly affect ground contact percep-
tion.
H2: In addition, given the unique display properties of our two augmented reality devices, we an-

ticipated that the ability of a shadow to create a sense of ground contact would vary depending on the
shading technique employed to render it in AR. A priori, we did not anticipate significant differences
in ground contact perception for our virtual reality HMD condition as the completely virtual scenes
generated by this device benefited from rich and consistent depth cues.
H3: Finally, we anticipated that perceptually valid shading methods would be more beneficial in

discerning ground contact over a photometrically incorrect shading method since this method would
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better match the real world cues for depth given by shadows.

Figure 5.1: Close up images of the experimental stimuli used in Experiment 1 are displayed for each MR device.
All stimuli are presented on the ground in this image. The same shaders for cast shadows were used across
devices for the (1) no shadow, (2) gray shadow, (3) white shadow, and (4) gradient shadow shading conditions.
OST AR images were captured with the HoloLens’ native mixed reality capture feature, which relies on video
input. VST AR images relied on the Zed Mini’s video feed. Color correction has been applied to both augmented
reality images to better match what participants saw during the experiment.

5.1.1 Participants
Thirty six individuals (27M, 9F) aged 18–32 from Vanderbilt University were recruited to participate.
All participants had normal or corrected to normal vision, and each person was offered donuts for
40 minutes of their time. Our experimental methods were approved by the local institutional review
board, and written consent was obtained from all subjects prior to participation.

5.1.2 Design
Our protocol was modeled after the one used byMadison et al. [295] in which participants were asked
to rate their confidence in perceived contact between a target object and the surface beneath it when
virtual stimuli were presented either above or in contact with a surface. For both this prior study and
our current research, participants rated their certainty in perceived ground contact for each stimulus
using a 5-point response format with verbal anchors where values mapped to: (1) definitely touching,
(2) maybe touching, (3) unsure, (4) maybe above, and (5) definitely above. The input prompt used in the
current work is shown in Figure 5.2.
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We used a mixed factorial design for this experiment. Specifically, a 3 (display type) x 4 (shadow
type) x 3 (distance) design, with head-mounted display type (OST AR, VST AR, or VR) as a between-
subjects variable and shadow type (none, gray, white, or gradient) and distance as within-subjects vari-
ables. Section 4.2.2 discusses the shadow types in further detail. Targets were placed at distances of
1m away from the viewer on a table, 1m away from the viewer on the ground, and 3m away from the
viewer on the ground.
To mitigate viewing order effects, our experiment was blocked with respect to distance condition,

and the order in which each distance condition was presented was counterbalanced across subjects.
Within each block the order of presented stimuli was randomized without repeating within a series
of 16 trials. This coincided with an experiment interruption in which participants were prompted to
indicate if they required a break.
Within each display condition, participants were exposed to four shadow sub-conditions across three

distances. Because we evaluated four shadow shading conditions–that were presented on or above the
ground across three distances–there were 24 unique stimuli in total. Additionally, each unique stimu-
lus was viewed 10 times, making the experiment consist of 240 trials total. We used a repeated measures
design because it is an effective method for reducing the effect of variance between participants by per-
mitting an individual to act as their own control.

5.1.3 Procedure
Before beginning the experiment, the participant recorded their basic demographic information and
gave written consent. Then, the participant was introduced to one of the three immersive head-mounted
displays, and they were instructed on how to wear and interact with the system. During this tutorial,
they were also shown how to use a gaze directed interface.
Next, the researcher explained the experimental task to be performed and guided the participant to

the experimental setup, which can be seen in Figure 4.3. In this room, stimuli were presented either on
the floor, which was covered in blue foam squares, or on a nearby table. A disposable cloth of a similar
blue color was draped along the top of the table with white tape wrapped around its edges. The tape
was included to improve the table’s salience for the two AR systems, which relied on inside-out track-
ing. Throughout the experiment participants sat in one of two adjacent chairs in the room. Both the
approximate locations and chairs used in the experiment are marked in Figure 4.3 for clarity.
Virtual target objects were placed in front and slightly to the left of the participant. To view stimuli

that were placed on the floor, a participant sat in the right chair, and to view stimuli that were posi-
tioned on the table, a participant sat in the left chair. The left chair was included to view targets atop
the table since the table was physically offset towards the left of the room. Before each experimental
block, a participant was guided to the appropriate chair for viewing. The researcher also gave partic-
ipants a short break while the system was calibrated for the next distance condition. Calibration was
performed to ensure that target objects appeared at the correct position in space. For the OST AR sys-
tem, this process involved positioning a HoloLens’ world anchor at a predetermined position in the
room. For the VR and VST AR systems, calibration entailed placing a Vive Tracking puck.
After calibration was complete, the participant was given their head-mounted display. Upon don-

ning the display, the participant saw a single prompt, which asked if they were ready to begin the next
portion of the study. The next block of the experiment began once the user selected the ’ready’ but-
ton below this prompt. Each participant was asked to respond to experimental trials as quickly and as
comfortably as possible. The participants viewed one stimulus at a time. Once they determined their
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answer, they clicked once to reveal an input prompt with the 5 potential confidence in ground contact
ratings. This prompt appeared immediately in front of the user to prevent strenuous head movement,
and the target object was removed from sight. The next trial began once the user selected a value be-
tween 1 to 5 on the input prompt. Clicking anywhere else allowed the user to toggle between viewing
the current target and its corresponding input prompt. After every 16 trials, the participant was asked
if they needed a break via a virtual prompt within the simulation. After 80 trials, the system was re-
calibrated for the next distance condition and the next experimental block began.

Figure 5.2: Input prompt for measuring one’s certainty in estimating ground contact

5.1.4 Results
Our study used ordinal subjective assessments to investigate differences in perceived ground contact
across shadow shading conditions. Participants gave ratings of their confidence in perceived surface
contact using a 5-point response format like the one used inMadison et al. [295]. Due to the use of an
ordinal response format, the resulting data were not normally distributed and nonparametric statisti-
cal analyses were employed for correct interpretation. First, we employed Friedman tests to determine
if there were differences in confidence ratings between experimental conditions. For each participant
we evaluated the average confidence rating for perceived contact across 10 repeated trials. We then used
Wilcoxon signed-rank tests in post-hoc analyses with Bonferroni correction to understand specific ef-
fects of shadow and distance conditions. Bonferroni correction is recommended for evaluations with
multiple comparisons to compensate for an increased chance of Type I error. As a result, for our eval-
uations of the three shadowmethods and the three distance conditions, the significance level was set at
p < 0.0167.

5.1.5 Shadows improve surface contact
Based on an abundance of prior research in psychology and computer graphics, which demonstrates
that shadows provide an effective cue for establishing ground contact [135, 295, 333, 449], we antic-
ipated that the presence of a shadow would result in a significant difference in people’s confidence in
perceived contact between the no shadow and the other shadow conditions–regardless of display sys-
tem. To evaluate this hypothesis, we ran a Friedman test on average confidence of contact ratings be-
tween the no shadow condition and all other shadow conditions when collapsed. Table 5.1 summarizes
the average confidence ratings across participants as well as the results of this analysis.
For the OST AR display, when target objects were placed on a surface, Friedman tests showed a sig-

nificant difference in people’s confidence of contact ratings between the shadow conditions when col-
lapsed together and the no shadow condition (χ2(2) = 4.45, p = 0.035). However, when objects
were placed above the ground, there was no significant difference in confidence ratings between the no
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Figure 5.3: Average confidence in
ground contact rating with 95% CI
of ground contact with shadows in
OST AR
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Figure 5.4: Average confidence in
ground contact ratings with 95% CI
of ground contact with shadows in
VST AR
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Figure 5.5: Average confidence in
ground contact ratings with 95% CI
of ground contact with shadows in
VR

shadow and collapsed shadow conditions (χ2(2) = 1.60, p = 0.206). This indicates that people’s con-
fidence in perceiving when an object was placed above the ground was higher when a cast shadow was
present—but only when the target object was truly placed on the ground.
For both the VST AR and VR display conditions, people were more confident in assessing surface

contact in the presence of a shadow, regardless of whether the target object was placed on the ground or
above it. For the VST AR device, people’s confidence differed between the no shadow and shadow con-
ditions for targets with the same degree of significance for both on and above ground targets (χ2(2) =
8.33, p = 0.004). There was a difference in people’s confidence of contact given the presence of a
shadow for the VR display, as well, for both the on ground target objects (χ2(2) = 8.33, p = 0.004)
and the above ground target objects (χ2(2) = 12.00, p = 0.001).
As expected, we found significant differences in confidence of contact between the no shadow and

collapsed shadow conditions for all devices–a result which confirms our hypothesis (H1). However, it
was curious that confidence ratings for virtual objects in OST ARwere significant only when placed
on the ground. To better understand this finding, we conducted a post-hoc analysis on the average con-
fidence ratings for above ground objects for each shadow condition in the OST AR device. Wilcoxon
signed rank tests indicated that people’s ratings for the no shadow condition were significantly different
from the white (Z = −3.1, p = 0.002) and gradient (Z = −2.8, p = 0.005) shadow conditions,
but not the gray shadow condition. These findings were reasonable, given that dark color values are
known to appear more transparent in additive light displays like those used in OST AR. If a shadow is
too transparent for a viewer to discern when an object is placed above the ground, then it may adversely
affect the viewer’s ability to determine surface contact such that their confidence ratings more closely
resemble the ratings expressed in the no shadow condition.

5.1.6 Realistic shadows are not necessary to improve surface contact
Next, we evaluated differences in confidence of contact for on and above ground targets for the differ-
ent shadow shading methods via Friedman tests for each device. In the OST AR device, Friedman tests
across the three rendered shadow conditions revealed no significant differences in people’s confidence
ratings between the methods when an object was placed on the ground. However, the same analysis did
find a difference when objects were placed above the ground (χ2(2) = 18.500, p < 0.001). Post-hoc
tests revealed that confidence of contact ratings for all three shadow conditions were significantly dif-
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Table 5.1: Results of Friedman analysis–Friedman’s Q–between the no shadow and shadow conditions for each
device

On Ground Above Ground

Avg Rating Avg Rating
No Shadow Shadow χ2(2) Sig No Shadow Shadow χ2(2) Sig

OST 2.5 1.6 4.455 = 0.035∗ 2.7 3.1 1.600 = 0.206
VST 2.2 1.4 8.333 = 0.004∗ 2.4 3.4 8.333 = 0.004∗

VR 2.1 1.5 8.333 = 0.004∗ 2.8 3.7 12.000 = 0.001∗

ferent from each other. Namely, ratings for the white shadow ratings differed from the gray shadow
(Z = −3.1, p = 0.002) and the gradient shadow (Z = −2.8, p = 0.005); the ratings for the gradi-
ent shadow differed from the gray shadow (Z = −2.9, p = 0.004). For each shadow condition the
average confidence of contact ratings were: 3.1, 3.8 and 4.6 for the gray, gradient, and white shadows,
respectively. Figure 5.3 further illustrates the differences in these ratings, where the white shadow shad-
ing condition is given the highest confidence rating and the gray shadow shading condition is given the
lowest confidence rating among the shaded shadow conditions. For OST AR, brighter–and therefore
more salient–shadows appeared to greatly influence people’s confidence of surface contact when ob-
jects were placed above the ground.
For the VST AR device, we found a significant difference in confidence of contact ratings between

shadow conditions for both on ground (χ2(2) = 7.787, p = 0.020) and above ground (χ2(2) =
12.667, p = 0.002) target objects. The average ratings for the no shadow conditions and the three,
shaded shadow conditions are visualized in Figure 5.4. Post-hoc analyses revealed that when target ob-
jects were on the ground, the white shadow was significantly different from the gray shadow condition
(Z = −2.432, p = 0.015). Furthermore, for above ground objects, the white shadow was signifi-
cantly different than both the gray (Z = −2.472, p = 0.013) and the gradient shadow condition
(Z = −2.590, p = 0.010). Interestingly, for both on and above ground targets, the white shading
method for shadows generally resulted in higher average confidence of contact ratings for target objects
when compared to the other shading methods (See Table 5.2).
In VR there was no significant difference in confidence of contact between the three shadow shad-

ing methods (See Figure5.5 and Table 5.2). Although confidence was unaffected by shadow shading
method in VR, confidence ratings in AR displays proved quite sensitive, which confirmed our second
hypothesis (H2) that shadow shading method would influence people’s confidence in surface contact
perception in augmented reality displays. However, we were unable to confirm (H3), which predicted
that people would make more confident surface contact ratings given realistic cast shadows over non-
photorealistic shadows in AR. This outcome becomes particularly curious when we examine the non-
photorealistic (the white shadow) shading condition’s performance across the OST AR and VST AR
devices. In the OST AR display, people’s confidence was significantly higher when target objects were
placed above the ground. Their confidence matched the ground truth of the target’s position in space.
However, in VST AR, people’s confidence ratings were higher when presented with the white shadow,
regardless of whether the object was placed on the ground or above it, which may be an undesirable
outcome for establishing ground contact.
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Table 5.2: Results of Friedman analysis between the shadow conditions (dark gray, white, and gradient) for each
device

On Ground Above Ground

Avg Rating Avg Rating
Gray White Grad χ2(2) Sig Gray White Grad χ2(2) Sig

OST 1.6 1.4 1.5 1.317 = 0.518 3.1 4.6 3.8 18.500 < 0.001∗

VST 1.4 1.8 1.5 7.787 = 0.020∗ 3.4 4.0 3.4 12.667 = 0.002∗

VR 1.5 1.6 1.6 1.227 = 0.541 3.7 4.0 3.9 4.667 = 0.097

5.1.7 The distance to a target affects people’s ability to discern surface contact
We displayed targets at multiple positions within personal and actions space to better understand how
our results were influenced by viewing conditions. We believed this was especially important for our
first investigation since depth cues can vary in effectiveness across distances [96]. We first conducted
Friedman tests across the 1m table, 1m floor, and 3m floor conditions to determine if there were differ-
ences in confidence of surface contact ratings across the viewing distances. Table 5.3 shows the average
ratings and significance values across conditions for this analysis. We then ran post-hoc tests to compare
confidence ratings between specific distance conditions.
For the OST AR display, we found no significant difference in confidence of contact ratings across

viewing distance conditions when the object was in contact with the ground. However, there was a sig-
nificant effect of distance when objects were placed above the ground (χ2(2) = 16.468, p < 0.001).
Post-hoc tests showed that people’s confidence in contact ratings for the 3m floor distance were sig-
nificantly higher than the ratings for the 1m floor (Z = −2.8, p = 0.006) and 1m table conditions
(Z = −3.1, p = 0.002).
We also found no difference in confidence of contact ratings across viewing distances when objects

were placed on the ground for VST AR. However, there was a significant difference between viewing
distance conditions for above ground objects (χ2(2) = 12.667, p = 0.002). In a similar pattern to we
found in the OST AR condition, in VST ARwe found that people were more confident that target
objects were placed above the ground for the 3m floor condition than either the 1m floor condition
(Z = −2.7, p = 0.008) or the 1m table condition (Z = −3.1, p = 0.002).
Similarly, in the VR display there was no effect of viewing distance for the on ground objects; how-

ever, there was a significant difference between viewing distance conditions when objects were placed
above the ground (χ2(2) = 18.766, p < 0.001). In VR, people’s confidence of surface contact was sig-
nificantly higher for the 3m floor and 1m floor conditions when compared to the 1m table condition,
with the same degree of significance for both comparisons (Z = −3.1, p = 0.002). The average con-
fidence ratings for each viewing distance condition are displayed in Table 5.3. The average ratings for
above ground objects were higher in the 1m floor and 3m floor conditions with scores of 4.2 and 4.1,
respectively. In contrast, the average rating for the 1m table distance condition was only 2.5.
For all devices, we found significant differences in confidence of surface contact as a function of

viewing distance for target objects positioned above the ground, but not for those positioned on the
ground. In addition, confidence ratings for above ground objects were significantly higher for the 3m
floor condition than either one or both of the 1m floor and 1m table conditions for all devices. A pos-
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sible explanation for this finding is that the 3m floor condition permitted the viewer to see underneath
the target object, thereby making it easier for the viewer to determine when objects were positioned
above the ground since their view of the cast shadow underneath the object was more clear. However,
people’s ratings for the 3m floor and 1m floor conditions did not significantly differ in the VR condi-
tion, so this finding may be unique to AR devices.

Table 5.3: Results of Friedman analysis between the distance conditions (1m on table, 1m on floor, 3m on floor)
for each device

On Ground Above Ground

Avg Rating Avg Rating
1m Tab 1m Fl 3m Fl χ2(2) Sig 1m Tab 1m Fl 3m Fl χ2(2) Sig

OST 1.5 1.4 1.7 3.268 = 0.195 3.4 3.7 4.5 16.468 < 0.001∗

VST 1.4 1.8 1.4 2.227 = 0.328 3.0 3.3 4.4 12.667 = 0.002∗

VR 1.7 1.7 1.7 0.304 = 0.859 2.5 4.2 4.1 18.766 < 0.001∗

5.1.8 Discussion
Overall, the results of our comparisons between the no shadow condition and all other shadow condi-
tions when collapsed re-affirm that shadows provide a powerful cue for ground contact (H1). How-
ever, our investigation cautions against the use of dark color values for shadows in OST AR devices
as they may be less effective than other, more visible, techniques for establishing ground contact. Al-
though we did not find a significant effect of shadow condition for the OST AR display when objects
were placed above the ground, post-hoc analyses revealed that people’s confidence in the gray shadow
condition was similar to the no shadow condition. People’s low confidence when presented with the
gray shadow in OST AR likely influenced the outcome of our Friedman test between the no shadow
and shadow conditions.
A priori, we also anticipated that shadow shading techniques would vary in effectiveness for both

AR devices (H2). We confirmed this hypothesis, but we were surprised to find that the photometrically
incorrect shading method–the white shadow–generally resulted in higher confidence of surface contact
when objects were placed above the ground for both AR devices. This outcome was particularly unex-
pected since we had predicted that more perceptually valid shadowmethods, like the gray and gradient
shadows, would be more beneficial for establishing ground contact. As a result, we could not confirm
our third hypothesis (H3). This counterintuitive result encouraged further evaluation of the effect of
high contrast, and therefore more visible, object and shadow shading conditions in our second study.
It should be noted that we saw different effects of shading conditions between the OST AR and

VST AR devices. This can be attributed to differences in the displays as both AR devices combine real
and virtual images in very different ways. Whereas people’s confidence of surface contact in the OST
AR device proved highly sensitive to all shading methods when objects were placed above the ground,
people’s confidence of contact in the VST AR condition was sensitive to a single shading condition–
the white shadow–regardless of whether an object was placed on or above the ground. In addition, for
the OST AR device we found that the white shadow resulted in the highest confidence and the gray
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shadow resulted in the lowest confidence. The gradient shadow’s confidence ratings fell between the
two. One interpretation of these results is that more salient shading techniques are more effective for
determining ground contact in OST AR displays. For example, the white shadowmay have been more
prominent against the darkly textured target object used in our first evaluation.
Our first study on ground contact perception suggested that non-photorealistic shadow shading

techniques in ARmay be beneficial for attaching virtual objects to the surfaces beneath them. This
finding was surprising given that researchers previously theorized that consistent depth cue informa-
tion between real and virtual objects is necessary to improve depth perception in augmented reality
[1, 107, 245]. These findings motivated a second investigation in which we hypothesized that the color
contrast between the target object and its shadow was a contributing factor to our initial results.

5.2 Study 2 - Color contrast between object and shadow influences
surface contact

The results of our first experiment indicated that shadow shading plays an important role in determin-
ing ground contact in augmented reality. Interestingly, we found that people performed better with
white shadows—or non-photorealistic shadows—than with the other shading methods when discern-
ing ground contact for both OST AR and VST AR devices, especially when objects were placed above
the ground. Given these results, we suspected that the high contrast of the white shadow’s color value
against the darkly textured target object used in our study allowed participants to more confidently
assess ground contact. To better understand how object shading may have influenced the findings of
Experiment 1, we evaluated different object and shadow shading conditions in Experiment 2. We also
used the same testing environment with a medium blue background so that we could draw compar-
isons between the two studies.
Therefore, for Experiment 2, we designed our study to evaluate the effect of color contrast between

a target object and its shadow. We employed a 2 x 2 design in which the shading methods used for both
the target object and its shadow were manipulated to use either light or dark color values. The 2 x 2 de-
sign resulted in four unique shading conditions that allowed us to parse out what aspects of perceived
surface contact were affected by shadow shading method alone versus the contrast of an object and its
shadow shading method. For evaluation we elected to use a psychophysical approach. Psychophysics is
a class of psychological methods that quantitatively measures perceptual responses to changes in phys-
ical stimuli [118]. This change in protocol allowed for greater sensitivity in measuring perception of
ground contact and it enabled us to cast our evaluation as a within-subjects evaluation across devices.
The same three, immersive head-mounted displays from Experiment 1 were used to test the perception
of shadows in this experiment.
Based on the results of our first experiment, we developed three hypotheses. First, we anticipated

that high color contrast between objects and their shadows would improve the likelihood of correct
assessment of ground contact in augmented reality displays (H1). We also predicted that white shadow
shading methods would improve participants’ ability to discern surface contact in augmented reality
(H2). However, given the results of our first study and our prior discussion, we did not anticipate any
significant effects of shadow shading method on task performance for the virtual reality head-mounted
display (H3).
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Figure 5.6: Dark object
with dark shadow
condition (DODS)

Figure 5.7: Dark object
with light shadow
(DOLS)

Figure 5.8: Light object
with dark shadow
(LODS)

Figure 5.9: Light object
with light shadow (LOLS)

5.2.1 Participants
Six individuals in total (3M, 3F) aged 20–45 from Vanderbilt University volunteered to participate in
the second experiment, which used a psychophysical paradigm. These methods rely on a small number
of participants to make a large number of simple, behavioral responses that reveal underlying percep-
tual processes. Psychophysical paradigms have proven highly replicable since they employ judgments or
adjustments with low individual variance [112, 435]. Although this family of paradigms typically rely
on a smaller number of participants, six participants were required to counterbalance the presentation
order of the three immersive displays. All participants had normal or corrected to normal vision. Our
experimental methods were approved by the local institutional review board, and written consent was
obtained from all subjects prior to participation.

5.2.2 Design
For Experiment 2, we evaluated the relationship between object and shadow shading across the same
OST AR, VST AR, and VR devices that were used in Experiment 1. However, in this experiment we
employed a psychophysical approach to evaluate how light and dark color values affect the relationship
between a target object and its shadow when determining ground contact. By using this approach we
were able to restructure our experiment as a within-subjects evaluation for further experimental con-
trol, and we were able to efficiently evaluate ground contact perception for target objects at multiple
heights for a more sensitive measure of performance. Specifically, we used a two-alternative forced
forced choice (2AFC) design with method of constant stimuli—a classic method [154]. We used a
within-subjects 2 x 2 factorial design in which two levels of shading for a target object and its shadow
were presented.
The shading levels contained light and dark color values such that two high contrast and two low

contrast conditions were created. In this context, we refer to contrast as a difference in color—rather
than luminance—since we are unable to directly compare luminance values using traditional meth-
ods over the three unique display types. Grayscale color values were used to inform shaders for both
the target object and its shadow. The low contrast conditions were: [light object x light shadow] and
[dark object x dark shadow]. The high contrast conditions were: [light object x dark shadow] and [dark
object x light shadow]. High contrast conditions had a difference of 200 RGB color values and low
contrast conditions had a difference of 30 RGB color values. Specifically, we use grayscale RGB color
values of 250 and 20 to inform the target object shader and we use grayscale RGB color values of 220
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and 50 for the shadow shader in this experiment. The same shadow shaders that were developed for
Experiment 1 were also used for Experiment 2 (See Subsection 4.2.2). This design resulted in 4 unique
combinations of experimental stimuli.
For each stimulus pair in our temporal 2AFC protocol, the participant was asked “Which stimulus

is closer to the ground?” Each stimulus was presented for 600 msec. In between each stimulus pair,
there was an interval of 800 msec in which a random pattern was presented to avoid visual aftereffects.
Participants responded using the left mouse button to indicate the first stimulus and the right mouse
button to indicate the second stimulus. One stimulus was presented on a surface and the other was
presented at some height above the surface. In this second experiment, all objects were positioned 1m
away from the viewer on the same table that was used in Experiment 1.
Objects were presented at one of six heights between 0 and 3mm at regular intervals of 0.03 degree

changes in viewing angle (See Section 4.2.3). This change in visual angle corresponded to approxi-
mately a 0.06mm change in height per step. Each height comparison was presented 20 times each,
except for when both the first and second object heights were both presented on the ground with 0
vertical displacement. In this case, the height conditions were only presented 10 times each.
The experiment was blocked by device and counterbalanced across subjects. Each device block con-

sisted of 440 trials, resulting in each participant completing 1320 trials throughout the experiment.
The experiment took approximately two hours to complete, with participants taking around 30 min-
utes to complete the experimental task in each device. Within each experimental block, stimulus pairs
were presented pseudo-randomly such that there were no repetitions of any unique stimulus combi-
nation before all other unique stimuli were presented once. The experiment was self-paced. Both the
user’s response and their response time were recorded for each trial. The next trial began 1000 ms after
the participant responded to the previous trial–unless the experiment was paused. In total, across all
subjects we collected 7,920 datapoints.

5.2.3 Procedure
This experiment was conducted after the Covid-19 outbreak. Therefore, special considerations (e.g.,
social distancing) had to be implemented to protect both the experimenter and the participants. First,
the researcher explained the experimental protocol to the participant and gave them an informed con-
sent form. Throughout the experiment, participants were informed that they could take a break at any
time, and the programs used to run the study asked participants after every 44 trials if the subject re-
quired a break from the task.
Participants were asked to calibrate the equipment themselves–instead of the experimenter–to avoid

the spread of germs through shared head-mounted displays. Otherwise, the calibration phase for the
current experiment was the same as in Experiment 1. After completing the trials in one head-mounted
display, the participant filled out a short post survey before continuing onto the next head-mounted
display used for the experiment and thus the next block of trials. At the end of the experiment, partici-
pants filled out a short final survey.

5.2.4 Results
We analyzed our data using a binomial mixed model to understand the influence of shading condition
on participants’ judgments. Mixed models are a form of generalized regression that is appropriate for
non-normally distributed outcomes and repeated-measures designs. The four shading conditions were
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Figure 5.10: Response data from the 2AFC task in Experiment 2 has been fitted with a cumulative normal curve
using a generalized linear model. The figure shows the psychometric curves for response data for the OST AR
display (left), the VST AR display (middle), and the VR display (right) conditions.

included as within-subject predictors in our model: 1) dark object with dark shadow (DODS), 2) dark
object with light shadow (DOLS), 3) light object with dark shadow (LODS), and 4) light object with
light shadow (LOLS).
In this analysis, positive effects indicate an increased likelihood of correct ground contact judgement

in our 2AFC task. Across all three devices, we found a main effect of shading condition such that par-
ticipants viewing the dark object with light shadow (DOLS) condition had an increased likelihood of
correctly judging a target’s ground contact in comparison to the other shading methods. In Figure 5.10
participants’ forced choice response data has been plotted with a psychometric function for each dis-
play condition for clarity.
In the video see-through augmented reality device, the DOLS condition resulted in an increased

likelihood of correct response in comparison against the DODS (β = 1.397, SE = 0.149, p < 0.0001),
the LODS (β = 1.41, SE = 0.149, p < 0.0001), and the LOLS (β = 1.25, SE = 0.150, p < 0.0001)
shading conditions. For the virtual reality device, the DOLS condition performed similarly against the
other conditions with an increased likelihood of correct response in comparison to the DODS (β =
0.807, SE = 0.13, p < 0.0001), the LODS (β = 0.658, SE = 0.132, p < 0.0001), and the LOLS
(β = 0.830, SE = 0.131, p < 0.0001) conditions.
From the results of our first experiment, we expected more nuanced relationships between object

and shadow shading methods to be revealed for the OST AR device, and this expectation was met.
Each shading condition performed significantly different from each other such that the order of highest
to lowest likelihood of correct response was: 1) dark object with light shadow (DOLS), 2) light object
with light shadow (LOLS), 3) dark object with dark shadow (DODS), and 4) light object with dark
shadow (LODS).
In a similar fashion to the results found in the other displays, the highest likelihood of correct re-

sponse was found in the DOLS shading condition. Statistically speaking, people’s responses given the
dark object with light shadow condition (DOLS) were more accurate than when they were presented
with any of the other shading conditions: LOLS (β = 0.894, SE = 0.1613, p < 0.0001), DODS
(β = 1.215, SE = 0.158, p < 0.0001), LODS (β = 1.919, SE = 0.155, p < 0.0001). People also
performed better in the light object with light shadow condition (LOLS) than both of the dark shadow
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conditions: DODS (β = 0.321, SE = 0.136, p = 0.0181) and LODS (β = 1.0253, SE = 0.132, p <
0.0001). And they performed better in the dark object with dark shadow condition than the LODS
(β = 0.704, SE = 0.127, p < 0.0001) condition.

5.2.5 Discussion
Across all devices, the dark object with light shadow (DOLS) condition resulted in an increased like-
lihood of correct judgement of distance to the ground. This result echoes the findings of our first ex-
periment in which the white shadow condition resulted in significantly different responses for both
augmented reality devices. Prior research in computer graphics has shown us that light, photomet-
rically incorrect cast shadows may be as effective as dark, perceptually correct cast shadows in spatial
location tasks [228]. Our current research finds a similar trend in that people often perform better with
the white shadow condition than with other perceptually valid shading approaches—especially in our
employed additive light display.
However, it is interesting to note that while the DOLS condition resulted in a significant increase in

performance in the VR condition for Experiment 2, we did not see this pattern of results in the first ex-
periment. We believe this is due in part to the difference in paradigm. Whereas our first evaluation was
useful for uncovering multiple cues that may be interacting with a viewer’s ability to perceive ground
contact, in general, our second evaluation used a more sensitive paradigm to allow us to isolate to what
degree cast shadow shading cues were affecting a viewer’s sense of ground contact. Thus, we may have
been better able to isolate subtle differences in performance in Experiment 2. Across all devices, partic-
ipants generally expressed that the dark object with light shadow (DOLS) shading condition was the
easiest condition to see the shadow, which explains why it performed pointedly well.
The DOLS method was the only one to result in a significant difference in performance from the

other conditions in both the video see-through and virtual reality device (DOLS> LOLS ,DODS ,
LODS) . However, the optical see-through device proved highly sensitive to all shading conditions. In
order of highest likelihood of correct response to lowest likelihood, the shading conditions performed
as follows: DOLS> LOLS>DODS> LODS. It is important to note that the two high contrast con-
ditions (dark object with light shadow and light object with dark shadow) resulted in highly polarizing
performance. This is likely due to the HoloLens’ reliance on additive light to render objects. In addi-
tion, both light shadow conditions resulted in more accurate ground contract perception over the dark
shadow shading methods. While participants expressed that the DOLS condition was easy to interpret
since the shadow was very visible, participants complained that the opposite was true for the LODS
condition. Participants reported that the bright appearance of the object made it difficult to see the
dark shadow underneath it.
In summary, we were unable to confirm our first hypothesis, in which we predicted that people

would perform better in the high contrast color conditions than the low contrast conditions when de-
termining ground contact in augmented reality (H1). However, our results did indicate that a viewer’s
perception of ground contact is highly sensitive to high color contrast between objects in their shadows
in optical see-through AR.We were also only able to partially confirm our second hypothesis in which
we predicted that the white shadow condition would improve surface contact perception in augmented
reality displays (H2). We found this relationship to be true in the OST AR device; however, in VST
AR the white shadow only resulted in an increased likelihood of correct response when the target ob-
ject was dark (DOLS). Finally, unlike in our first study, we found a significant effect of shading condi-
tion in the virtual reality condition where the DOLS shading condition performed significantly better
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than all other conditions, which means that were were unable to confirm our third hypothesis (H3).

5.3 Study 3 - Surface contact judgements are more accurate for a
rectilinear object than for a sphere

Preliminary evidence from Study 1 (Section 5.1) and Study 2 (Section 5.2) suggested that non-photorealistic
shadow shading techniques in ARmay be beneficial for attaching objects to the surfaces beneath. This
finding is surprising given what we know about depth perception. However, in our initial evaluations
we only assessed surface contact judgements for simple, rectilinear shapes. It is possible that people’s
judgements may have been influenced by the straight lines of our target object. Therefore, we decided
to conduct additional research to investigate the influence of object shape and orientation on people’s
ability to use photorealistic (dark) and non-photorealistic (light) shadows for surface contact judg-
ments. We conducted two psychophysical studies.
In both studies, shadows were manipulated to have either dark or light color values. In our third

study, which is discussed in Section 5.3, we manipulated both shadow shading technique and object
geometry to understand how the interplay between these two factors affected perceived surface contact
in MR. In our fourth study (Section 5.4), we compared a simple geometric shape to a complex one,
and we displayed them at different orientations. From the findings of our two studies, we were able to
extrapolate MR developer and design guidelines, which are discussed in Section 5.5.
For our followup work, we used the same three, immersive head-mounted displays (HMDs): a VR

display, a VST AR display, and an OST AR display. Our hardware setup (Subsection 4.2.1), the soft-
ware environment used for rendering to each display as well as the shaders used for rendering shadows
(Subsection 4.2.2), the equation used to displace test stimuli vertically based on visual angle (Subsec-
tion 4.2.3) were all the same as those used in the prior experiments.
We evaluated how realistic and non-photorealistic shading techniques for cast shadows affect one’s

ability to perceive surface contact for a cube, an icosahedron, or a sphere (Figure 5.11). These three ob-
jects were selected for their distinctive geometric properties. In particular, the shape, shading, and shad-
ows of the cube and sphere are recognizable and different. The icosahedron represents an in-between
case, with its indistinct shape, but shading closer to that of the sphere and shadow closer to that of the
cube. Our hypotheses for this experiment are as follows:
H1: We predicted that people’s ability to correctly perceive ground contact would be affected by an

object’s geometry, especially along the bottom edge that would be in contact with a surface. Specifi-
cally, we anticipated that people’s likelihood of correct response would be lower for the sphere across
all devices. A perfect sphere has only a single point of contact with a ground surface and that singular
point is occluded when viewed from above. In contrast, both the icosahedron and the cube were flat
along the edge and benefited frommany points of contact with the surface beneath them, although the
surface area of the bottom of the icosahedron was smaller than that of the cube.
H2: We anticipated that people would be more likely to correctly perceive surface contact when pre-

sented with the light shadow shading method, in comparison to the traditional dark shading method in
both AR devices. Although, our prediction may seem counterintuitive, some prior research has shown
that non-photorealistic shadows may function as well as photorealistic shadows as a depth cue for spa-
tial perception [5, 228].
H3: We also anticipated that there would be interactions between shape and shadow shading meth-

ods. However, a priori we were uncertain how these interactions would be expressed.
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Figure 5.11: Three geometric shapes were evaluated in Experiment 1. Each object was rendered with either dark
(realistic) or light (non‐photorealistic) shadow shading methods and was displaced vertically based on the viewer’s
visual angle to the target. Changes in vertical displacement were subtle, since a two‐alternative forced choice
(2AFC) psychophysical approach was used to evaluate surface contact perception.

5.3.1 Participants
Six individuals in total (3M, 3F) aged 23–30 volunteered to participate in our experiment, which used
a well-founded psychophysical paradigm. Psychophysics is a class of psychological methods that quan-
titatively measures perceptual responses to changes in physical stimuli [118]. These methods can use
a small number of participants to make a large number of simple, behavioral responses that reveal un-
derlying perceptual processes, gaining experimental power from a large number of observations. Psy-
chophysical paradigms have proven highly replicable and robust since they employ judgments or adjust-
ments with low individual variance [112, 435]. Psychophysics methods have previously been employed
successfully by other MR research groups [65, 129, 414].
All participants had normal or corrected to normal vision. Our experimental methods were ap-

proved by the local institutional review board, written consent was obtained from all subjects prior
to participation, and each participant was paid 20 USD for 2-3 hours of their time.

5.3.2 Design
To address our hypotheses, we utilized a 3 (MR display)× 3 (target shape)× 2 (shadow shading)×
6 (target height) within-subjects design to evaluate the effects of object shape and shadow shading on
surface contact judgments for objects at different vertical displacements. Although we conducted our
experiment with three different MR displays, we did not make any direct statistical comparisons across
displays due to the high variance in optical and graphical properties across devices. However, we evalu-
ated the same experimental conditions for eachMR display. As such, this section describes the experi-
mental design that was used for eachMR device.

Figure 5.12: A participant views the experiment in the VST AR condition (left). An image of the virtual
environment used for the VR condition (right).

Each participant evaluated 3 object shapes with 2 different shadow shading conditions,which re-
sulted in 6 unique combinations of experimental stimuli. The target shapes evaluated were a cube, an
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icosahedron, and a sphere. The shadows were shaded with either dark or light color values. Figure 5.11
displays all of the target shape and shadow shading conditions. All targets were rendered on a table 1
meter in front of the viewer (Figure 5.12). The size of the targets was adjusted to be 11.2 cm wide. Ac-
cordingly, the cube had a length, width, and height of 11.2 cm, the sphere’s diameter was 11.2 cm, and
he icosahedron was scaled so that its width was approximately 11.2 cm.
We employed a temporal two-alternative forced choice paradigm with method of constant stimuli—

a classic psychophysical method [55, 118]—to evaluate people’s perception of surface contact. Two-
alternative forced choice, or 2AFC, is a method for assessing someone’s sensitivity to a change in stim-
uli. It involves a forced choice, because participants must chose between one of two options. A temporal
2AFC paradigmmay also be referred to as a two-interval forced choice (2IFC) paradigm. After viewing
both stimuli in a sequence, participants in our experiment are then asked ”Which object is closer to the
ground?”. Compared targets were always of the same shape and shadow condition for each trial.
How the six levels of vertical displacement were presented was dictated bymethod of constant stim-

uli. As such, at least one of the target stimuli was always placed in contact with the surface beneath it.
The other object was then displaced vertically by one of six heights between 0 and 6mm at regular inter-
vals of .06◦ changes in viewing angle. When displacement was 0, both the first and second targets were
positioned in contact with the surface.
Changes in vertical displacement were subtle. All six height displacements are displayed in Figure

5.11, and the calculations for vertical displacement are described in detail in Section 4.2.3. Each height
comparison was presented 20 times each, except for when both the first and second object heights were
equal (at 0). In this case, the height conditions were only presented 10 times each. Stimulus pairs were
presented pseudo-randomly such that there were no repetitions of shape× shadow× height combi-
nations before all combinations were presented once. In addition, the order of presented stimuli was
balanced so that the number of trials in which the target was presented in contact with the ground first
and the number of times it was presented second were equivalent for each condition.
Trials for the task were blocked by device and order of device was counterbalanced across subjects.

For eachMR device, a participant completed 660 2AFC trials. Each participant thus completed 1,980
trials total, and 11,880 data points were collected across all subjects. We collected data over a large num-
ber of trials, which is common practice in psychophysical paradigms, to increase accuracy and ensure
low variance in our study [377]. By evaluating a large number of simple behavioral responses on a small
number of participants, this family of paradigms is better able to evaluate perceptual behaviors that
have little variance between individuals [112, 435].
We further confirmed that variance in our collected data was not due to between participant vari-

ance by calculating the intraclass correlation coefficient (ICC). The ICCmeasures the amount of vari-
ance accounted for by a grouping variable. For our analysis, individual participants was selected as the
grouping variable, where an ICC value of 1 indicates that any variance in the data is between partici-
pants while a value of 0 indicates that no variance in the data is due to between participant factors. We
found that τost = .009 for data collected with the OST AR display, which indicated negligible variance
was caused by between subjects factors. Similarly low ICC values were found for the VST AR and VR
display data with ICCs of τvst = .012 and τvr = .042, respectively.

5.3.3 Procedure
Before the experiment began, each individual was informed about the study and filled out a consent
form. They were told that they may stop the experiment at any time and that they were allowed to
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Figure 5.13: Experiment 3 — Average percentage of correct responses for each target object shape by display
condition: optical see‐through AR (left), video see‐through AR (center), and virtual reality (right). The effects of
shape on surface contact judgement were complex, with significant but different effects of target shape for each
display. However, people’s judgements with the cube were significantly better than judgements with the sphere
in all three devices.

take breaks during the experiment if needed. Both the experimenter and the volunteer wore face masks
while maintaining 2 m of separation between each other during the experiment.
Because the experiment was blocked by device, participants picked up one of the three designated

MRHMDs and started up the system. They were then verbally instructed on how to interact with the
system and they performed 10-20 practice trials that were randomly selected trials from the experiment.
After the volunteer expressed that they were comfortable with the system and experimental paradigm,
the experiment began.
For the temporal 2AFC paradigm with method of constant stimuli, each stimulus was presented

for 600 ms. In between each stimulus pair, there was an interval of 800 ms in which a random pattern
was presented at the position of the object to avoid visual aftereffects. After the presentation of each
stimulus pair, the participant was asked “Which stimulus is closer to the ground?”. They were told that
at least one of the objects was positioned on the ground. They then responded using the left mouse
button to indicate the first stimulus and the right button for the second stimulus. The experiment was
self-paced, and both the user’s response as well as their response time were recorded for each trial. The
next trial began 1000 ms after the participant responded to the previous trial—unless the experiment
was paused. After every 66 trials, participants were presented with a visual prompt that asked if they
needed to take a break.
Between devices, participants were also required to take a break to prevent fatigue. During the break,

they filled out a brief survey that asked them to describe any strategies that they used to determine
ground contact. After finishing the experiment in its entirety, they were asked to fill out a final sur-
vey. Although we did not directly compare peoples’ performance across MR devices in this study, due
to the high variance in display properties, in the final survey we asked participants about their experi-
ences in each device. We believed this information would be informative for interpreting our results.
Therefore, in the post experiment survey, they were asked to rank the difficulty of the experimental task
for each device and to rank the displays’ quality of graphics. They were also asked if their strategy for
determining ground contact differed across devices.

5.3.4 Results
Participants were asked to make binary decisions about which object was positioned closer to the ground
(first or second object) in a 2AFC task. Therefore, for our statistical analyses we used binary logistic re-
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gression models, which are appropriate for dichotomous outcome variables, to analyze participants’
judgments. We used the glm function from the stats package in R [379] to conduct logistic regressions
by specifying binomial errors and a logit link function. Because we wanted to analyze people’s per-
ception in each device, we ran separate models for each of the MR displays. For each display, we mod-
eled binary outcomes (accuracy: correct (1) or incorrect (0)) for our predictors: object shape, shadow
shading, and height. Height was recorded in millimeters then centered at zero and treated as continu-
ous. Object shape (3 levels: cube, icosahedron, sphere) and shadow shading (2 levels: dark, light) were
treated as categorical factors. Interactions between shape and shadow were included in the models.
We used these models to test three planned comparisons for each device to understand how object

shape and shadow influenced people’s surface contact judgments. These comparisons were: 1) whether
surface contact judgments differed for different object geometries (i.e.,H1 the main effect of object
shape); 2) the difference in surface contact judgments between dark and light shadow shading across all
other conditions (i.e.,H2 the main effect of shadow shading); and 3) interactions between object shape
and shading (i.e.,H3).
In order to examine whether there were main effects, we coded shadow and shape factors using de-

viation coding (also known as effect or sum coding). For the shape factor, the sphere was set as the ref-
erence group (i.e., coded as -1). For the shadow factor, the light shadow condition was coded as .5 and
dark shadow was coded as -.5. Using this deviation coding also allowed us to observe whether there was
a main effect of height. The general logistic regression equation is depicted in Equation 5.1 below.

log
(

p
1− p

)
= B0 + B1(shadow) + B2(cube)

+ B3(icosahedron) + B4(height)
+ B5(shadow× cube)
+ B6(shadow× icosahedron)

(5.1)

For the shape variable (H1), we were interested in whether the sphere lead to lower accuracy than the
other two shapes, collapsed across shadow and height. In order to answer this question, we conducted
planned contrasts on the aforementioned model comparing each shape to one another, using the Bon-
ferroni correction to account for multiple comparisons.
In order to examine whether there was a main effect of shadow shading (H2), the shadow regression

coefficient represents the difference between dark and light shadows averaging over shape and height.
We were also interested in a potential interaction between shape and shadow (H3). Specifically, was
each shape affected by the shadow shading? In order to answer this question, we calculated the shadow
simple slopes for each shape.
For the sake of simplicity, we discuss the implications of our findings as well as which factors are sig-

nificant in text, and we report the full details of the effects of factors in our analyses in Table 5.5

Optical See-through AR

We show the average percent of correct response for each of the evaluated main effects in Table 5.4.
The results of our statistical analyses are reported in Table 5.5. We expected participants to be more
likely to correctly indicate which object was on the ground as the height of target objects increased. The
improvement of participants’ performance as height increased is demonstrated statistically by a main
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Table 5.4: Experiment 3 — The accuracy for each shape and shadow condition tested reported with the standard
errors.

Accuracy for Experiment 3
Condition OST AR VST AR VR

Cube 80% [1.2%] 93% [ .7%] 95% [ .6%]
Icosahedron 84% [1.1%] 81% [1.1%] 73% [1.3%]
Sphere 77% [1.2%] 75% [1.3%] 78% [1.0%]

Dark 77% [ .1%] 78% [1.0%] 81% [ .9%]
Light 84% [ .1%] 88% [ .8%] 83% [ .9%]

effect of height in our logistic regression model (OR = 1.09, p < .001). Collapsed across all shape and
shadow conditions, the odds ratio (OR) of 1.09 indicates that for every 1mm increase in height, the odds
of correctly stating which object was closer to the ground increased by a factor of 1.09.

H1: Does object shape matter? People were least accurate when assessing surface contact given
the sphere, with 77% accuracy on average. In comparison, people were 80% accurate when presented
with the cube and 84% accurate when presented with the icosahedron (See Figure 5.13). In our paired
comparisons of people’s accuracy for each target shape, when collapsed across shadow and height, we
found that people’s accuracy when they were shown the sphere was significantly worse than when their
accuracy when shown the cube (OR = 1.42, p < .01) or the icosahedron (OR = 1.67, p < .001). In
other words, participants were 1.42 times or 1.67 times more likely to choose the correct object with
the cube or icosahedron, respectively, than with the sphere. There was not a significant difference in
response accuracy between the cube and icosahedron (OR = .85, p = .50).

H2: Does shadow shading method matter? People were 77% accurate when assessing surface
contact when presented with a dark shadow and 84% accurate when presented with a light shadow (See
Figure 5.14). The main effect for shadow (OR = 1.71, p < .001) indicates that a correct response was
1.71 times more likely when the object was presented with a light shadow compared to a dark shadow.

H3: Is there an interaction between shape and shadow? Analysis of the shadow by shape
simple slopes indicated that the effect of shadow was only significant for the cube (OR = 4.21, p <
.001), a finding that indicates that people were more 4.21 times more likely to make a correct response
when the cube was rendered with a light shadow. The predicted probabilities of correct response for
each shape and shadow are displayed in Figure 5.15 (left). On average, when presented with the cube,
people were 70% (SE = 1.9%) accurate with the dark shadow when presented and they were 90% (SE =
1.2%) accurate with the light shadow.

Video See-through AR

The the average probabilities of correct response for each main condition are shown in Table 5.4, and
the results of our statistical analyses are reported in Table 5.5. For VST ARwe again found a main ef-
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Figure 5.14: Experiment 3 — Average percentage of correct responses for each target object shadow by display
condition: optical see‐through AR (left), video see‐through AR (center), and virtual reality (right). People were
significantly more accurate when shadow shading was light, rather than dark in both AR device conditions.

Figure 5.15: Experiment 3 — Predicted probability of correct response for shape (cube, icosahedron, sphere) and
shadow (dark, light) interactions with 95% confidence. In VST AR, all shape x shadow interactions were
significant. In contrast, for OST AR the effect of shadow was only significant for the cube and for VR it was only
significant for the sphere.

fect of height (OR = 1.07, p < .001). Accordingly, as the height of the vertically displaced object
increased, participants were more likely to correctly indicate which object was on the ground.

H1: Does object shape matter? People were most likely to produce a correct response when
presented with the cube with 93% accuracy on average, and they were least likely to make a correct re-
sponse when presented with a sphere with 75% accuracy. People’s accuracy for the icosahedron was
81% on average (Figure 5.13). Planned contrasts for the shape variable indicated that the odds of pro-
viding a correct response significantly differed between all shape comparisons. The cube was more
likely to yield a correct response than either the sphere (OR = 4.90, p < .001) or the icosahedron
(OR = 2.93, p < .001). And the odds of providing a correct response for the icosahedron was higher
than the odds for the sphere (OR = 1.67, p < .001).

H2: Does shadow shading method matter? The main effect for shadow (OR = 2.28, p <
.001) indicates that a correct response was 2.28 times more likely when the object was presented with
a light shadow compared to a dark shadow. Overall, people were 88% accurate on average when pre-
sented with the light shadow and 78% accurate when presented with the dark shadow (See Figure 5.14).

H3: Is there an interaction between shape and shadow? Analysis of the shadow by shape
simple slopes indicated that the effect of shadow was significant for all three shapes. That is, the prob-
ability of providing a correct response was higher when a light shadow was presented regardless of
whether the object presented was a sphere (OR = 1.38, p < .05), a cube (OR = 2.40, p < .001), or
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Table 5.5: Experiment 3 — Results of planned comparisons using binary logistic regression models for each
display condition are displayed. B is the regression coefficient, SEB is the standard error of the regression
coefficient, OR is the odds ratio, and CIOR is the confidence interval associated with the odds ratio. Negative
values for B indicate that the first factor in the comparison was more accurate, whereas positive values indicate
that the second factor was more accurate.

Results for Experiment 3

OST AR VST AR VR

Predictor B SEB OR [CI]OR B SEB OR [CI]OR B SEB OR [CI]OR

Shape (cube vs ico) 0.16 .12 0.85 [ .64, 1.13] −1.08 *** .15 2.93 [2.06, 4.17] −2.10 *** .16 8.20 [5.66, 11.9]
(cube vs sphere) −0.35 ** .11 1.42 [1.09, 1.85] −1.59 *** .14 4.90 [3.51, 6.84] −1.78 *** .16 8.20 [4.08, 8.67]
(ico vs sphere) −0.52 *** .11 1.67 [1.29, 2.17] −0.51 *** .11 1.67 [1.29, 2.17] 0.32 ** .20 1.06 [ .57, .92]

Shadow (dark vs light) 0.54 *** .09 1.71 [1.43, 2.05] 0.82 *** .11 2.28 [1.85, 2.83] 0.21 .11 1.23 [ .99, 1.54]

Shape×Shadow (cube: dark vs light) 1.44 *** .17 4.21 [3.02, 5.85] 0.88 *** .24 2.40 [1.49, 3.85] 0.27 .28 1.31 [ .76, 2.27]
(ico: dark vs light) 0.31 .16 1.36 [ .99, 1.88] 1.28 *** .17 3.58 [2.58, 4.98] −0.01 .13 0.99 [ .76, 1.29]
(sphere: dark vs light) −0.13 .14 0.88 [ .66, 1.16] 0.32 * .14 1.38 [1.05, 1.81] 0.36 * .14 1.43 [1.08, 1.90]

Height 0.09 *** .01 1.09 [1.08, 1.10] 0.07 *** .01 1.07 [1.06, 1.08] 0.06 *** .01 1.06 [1.05, 1.07]
Intercept 1.63 *** .05 5.10 [4.62, 5.63] 1.88 *** .06 6.55 [5.87, 7.35] 1.85 *** .06 6.36 [5.69, 7.16]

∗p < .5 ∗ ∗ p < .01 ∗ ∗ ∗p < .001

an icosahedron (OR = 3.58, p < .001). The predicted probabilities of correct response for each shape
and shadow are displayed in Figure 5.15 (center). The average accuracy for people’s judgements with
the cube was 90%(SE = 1.2) on average for the dark shadow condition and 95%(SE = 0.8) for the light
shadow condition. For the icosahedron people were 73%(SE = 1.8) accurate with the dark shadow and
90% (SE = 1.2) accurate for the light shadow. For the sphere people were 72%(SE = 1.8) accurate with
the dark shadow and 78%(SE = 1.8) accurate for the light shadow.

Virtual Reality

The average rate of correct response for each main condition is reported in Table 5.4, and the results of
our statistical analyses are reported in Table 5.5. For VR we found a main effect of height (OR = 1.06,
p < .001) such that for every 1mm increase in height, the odds of correctly stating which object was
closer to the ground increased by a factor of 1.06.

H1: Does object shape matter? People were most likely to make a correct response when pre-
sented with the cube (95% accuracy on average), and they were least likely to make a correct response
when presented with the icosahedron (73%). People’s accuracy for the sphere was 78% (Figure 5.13).
The probability of providing a correct response significantly differed for all shape comparisons. Specif-
ically, planned contrasts, when collapsed across shadow and height, showed that participants were sig-
nificantly more likely to make a correct response when presented with the cube than the icosahedron
(OR = 8.20, p < .001) or sphere (OR = 5.95, p < .001). They were then more likely to make a correct
response given the sphere over the icosahedron (OR = .73, p < .01).

H2: Does shadow shading method matter? The average accuracy for surface contact judge-
ments was 81% for dark shadows and 83%for light shadows (See Figure 5.14). The main effect for
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shadow was not significant (OR = 1.23, p = .07), suggesting that, averaged across shape and height,
shadow shading did not have a significant effect on judgments of ground contact in virtual reality.

H3: Is there an interaction between shape and shadow? Analysis of the shadow by shape
simple slopes indicated that the effect of shadow was only significant for the sphere (OR = 1.43,
p < .05). The predicted probabilities of correct response for each shape and shadow are displayed in
Figure 5.15 (right). On average, when presented with the sphere, people were 76% (SE = 1.8%) ac-
curate with the dark shadow when presented and they were 81% (SE = 1.6%) accurate with the light
shadow.

How difficult was each condition?

We examined post-experiment survey responses to better understand how participants interpreted our
experimental stimuli. Participants were asked to rank the devices from easiest to hardest for determin-
ing ground contact, and they were asked to rank devices on graphics quality from lowest to highest. For
difficulty rankings, they assigned eachMR display to one of three categories: easiest, middle, or hardest.
For quality of graphics rankings, they assigned each display to best, middle, or worst.
There was no clear easiest display, given that all three MR devices were rated as the easiest display

by two out of six (2/6) participants. However, the AR devices were seen as more difficult than the VR
condition, with both the OST AR display (4/6) and the VST AR display (2/6) receiving ratings for be-
ing the most difficult display. Participants also stated that the video see-through display had the lowest
perceived quality of graphics with three out of six (3/6) worst votes and 3/6 median votes, and that the
optical see-through display had the highest quality graphics (5/6).
Peoples’ reported strategies in the post-experiment survey support the idea that the curved lines of

the sphere and its shadow increased the difficulty of discerning surface contact. For discussion, we will
refer to each participant with an acronym (e.g., P1 for the first participant). P1, P3, and P4 reported
looking at shadows “beneath” the objects or “beneath the front side” of objects. P3 also commented that
they tried to remember the point of optical contact for a given object. P2 and P5 explicitly stated that
they looked for the “edges” of shadows to make judgments. A reliance on shadow edges would also ex-
plain why people’s responses for the sphere were generally less accurate, regardless of MR display. Par-
ticipants reported that they employed the same strategies for discerning ground contact across devices.

5.3.5 Discussion
In our third experiment, we again found that light shadows improved ground contact judgments com-
pared to dark shadows for both AR devices and that they performed comparably to dark shadows in
VR. These results encourage the use of non-photorealistic rendering solutions for improving surface
contact judgments across MR displays. Perceived surface contact plays an important role in depth per-
ception and improving it may help alleviate the disconnected appearance between virtual objects and
real surfaces in AR.
In addition, we found that object shape influences surface contact judgments, where judgments were

more accurate for the cube than the sphere in all three MR devices. Judgments for the icosahedron
were more accurate than the sphere in VST AR and OST AR. Given that there was only case where
people’s judgements were more accurate for the sphere than another target shape, our current study
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provides some evidence that spheres may be less effective than other shapes in establishing surface con-
tact. This finding may have implications for depth perception inMR studies, as spheres are a common
target object used in distance perception research for these devices [15, 135, 360, 361]. In addition,
while our results for the main effect suggest an overall advantage for light shadows for AR, there were
some differences in these effects for specific shapes and devices. The benefit of light shadows was largely
driven by the cube in OST AR. But in VST AR all shapes were significantly influenced by the presence
of a shadow.
There are limitations to the present experiment. All objects were viewed from a single vantage point,

which may affect how generalizable our results are to other geometric shapes and perspectives in MR.
This concern is supported by prior research, which has demonstrated that spatial perception is influ-
enced by viewing angle [6, 261]. Some prior behavioral studies in AR have made conscious efforts to
display objects at multiple orientations to subvert any possible effects of orientation [135]. Others have
displayed objects at varying heights and distances [5]. Thus, to understand better how the placement
of an object may affect people’s ability to determine surface contact, we will evaluate target objects at
different orientations in the next experiment.
A second limitation is that we do not evaluate any 3D objects that have a comparable complexity to

those that might be used in typical AR and VR applications. All three objects that we evaluated were
simple geometric shapes. As highlighted by Powell et al. [376], an object’s geometry has the ability to
influence one’s perception of space. In Powell and colleagues’ study, researchers evaluated people’s
ability to reach and grasp virtual spheres, icosahedrons, and apples in VR. They found that the richer
geometry cues provided by the icosahedron and apple positively influenced reaching and grasping be-
haviors. In a similar manner, Do et al. [104] evaluated the effect of object color and luminance on ob-
jects of different shapes for depth judgments in mobile AR. They found interactions with color and
luminance on depth perception. The findings of both of these studies motivate us to evaluate a more
complex geometric shape in our next experiment.

5.4 Study 4 - Object complexity does not inherently improve
surface contact judgements, but an object’s orientation can

In this experiment we investigated if shape complexity and orientation influenced the perception of
surface contact when dark and light shadows were present. Figures 5.16 and 5.16, which display the ex-
perimental stimuli used in Experiment 2, present a strong visual argument for investigating orientation
given we can observe changes in shape and shading between an object and its cast shadows in these im-
ages with rotation. To address these concerns, we evaluate two target objects, a cube and the Stanford
dragon, at two orientations, rotated by 0◦ and rotated by 45◦, in our second study. Our hypotheses for
these experiments were as follows:
H4: We anticipated that people would be worse at discerning the Stanford dragon’s surface contact

because it has fewer points in contact with the ground and the 3Dmodel does not have a straight edge
along the bottom—unlike the cube primitive. In essence, we argued that the likelihood of correct re-
sponse would be more affected by the bottom edge of an object’s geometry than its inherent complex-
ity. This finding would provide evidence against the idea that more complex geometries are inherently
better for depth perception [28, 104, 376].
H5: Based on the results from our third study, we predicted that people’s surface contact judgments

would be more accurate for the light shadow condition than the dark shadow condition across both
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Figure 5.16: In Experiment 4, a cube and the Stanford dragon are rendered in each display and they are shown at
two orientations. All other shading and displacement factors were the same as in Experiment 3.

AR devices.
H6: We predicted that, overall, a change in object orientation would affect participants’ surface con-

tact judgments since changes in orientation can alter both the perceived shape of the surface contact
and its associated cast shadow for the viewer. Because the starting position (0◦) was different for the
cube and the dragon, it’s possible that the 45◦ rotation might have deferentially affected the perception
of the shapes. Therefore, we also include an interaction between shape and orientation in our analysis.

5.4.1 Participants
The same six individuals (3M, 3F) aged 23–30 volunteered to participate in our second experiment.
Our experimental methods were approved by the local institutional review board, written consent was
obtained from all subjects prior to participation, and each participant was paid 20 USD for 2− 3 hours
of their time.

5.4.2 Design
Our experimental design for the second evaluation mirrored the ones employed by our previous stud-
ies, in which a temporal two-alternative forced choice (2AFC) paradigm with a method of constant
stimuli was employed. All experimental details were the same, except for the independent variables. We
used the same testing environment, height displacement values (between 0 and 6mm), the same number
of comparisons, and the same number of trials. We employed two models, the cube from Experiment 1,
and the Stanford Dragon,* tesselated to have 113, 000 polygons.
Each participant evaluated two cast shadow conditions (dark and light) over three different object +

orientation conditions: the cube rotated by 45◦, the Stanford dragon rotated by 0◦, and the Stanford
dragon rotated by 45◦. This resulted in 6 unique combinations of experimental stimuli. However, our
analysis evaluated 8 combinations of stimuli, as we included the non-rotated cube condition (at the
two shadow conditions) from Experiment 1. This was done to prevent participant fatigue from an in-
creased number of trials. In the second experiment, 1,980 points of data were collected from each vol-
unteer for a total of 11, 880 datapoints. When combined with the cube data from the third experiment,
each participant completed 2, 640 trials for a total of 15,840 trials across all subjects.

*http://graphics.stanford.edu/data/3Dscanrep/
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Using the same approach that we employed for Experiment 1, we evaluated the extent to which par-
ticipant variance accounted for variance in our collected data by calculating the intraclass correlation
coefficient (ICC) for Experiment 2. For the OST AR display condition we found τost = 0.006 and for
the VST AR display we found τvst = 0.028. For the VR display condition τvr = 0.023. Because our
ICC values were near zero, we determined that our experimental findings were not significantly influ-
enced by between participant variation.

5.4.3 Procedure
The procedure for the final experiment followed the same protocol used in Experiments 2 and 3. How-
ever, this time volunteers did not undergo training for the devices and experimental paradigm since
they had already performed the experimental task before.

5.4.4 Results
For our analyses, we used the binary logistic regression model approach that we employed in the pre-
vious study (See Section 5.3.4: Experiment 3) to analyze participants’ 2AFC judgements for each of
the three MR devices. Separate GLMs with logit link functions were run for each device to under-
stand how an object’s cast shadow shading, geometric complexity, and orientation affected people’s
surface contact judgments in each device. Specifically, we modeled binary outcomes (correct or in-
correct) for our predictors: object shape, object orientation, shadow shading, and height. Height was
recorded in millimeters then centered at zero and treated as continuous. Object shape (2 levels: cube
and dragon), orientation (2 levels: rotated by 0◦ and by 45◦), and shadow shading (2 levels: dark and
light) were treated as categorical factors. These factors were deviation coded. For shadow shading, dark
was coded as−.5 and light was .5; for shape, cube was−.5 and dragon was .5; for orientation, 0◦ was
−.5 and 45◦ was .5.
We tested three planned comparisons for each device. These comparisons were: 1) whether surface

contact judgments differed for different object geometries (i.e.,H4 the main effect of object shape); 2)
the difference in surface contact judgments between dark and light shadow shading across all other con-
ditions (i.e.,H5 the main effect of shadow shading); and 3) whether an object’s orientation influenced
people’s surface contact judgments (i.e.,H6 the main effect of orientation). We also included an inter-
action between object shape and shading and an interaction between object shape and orientation to
better understand the relationship between these variables.

Figure 5.17: Experiment 4 — Average percentage of correct responses for each target object shadow by display
condition: optical see‐through AR (left), video see‐through AR (center), and virtual reality (right). People were
significantly more accurate when shadow shading was light, rather than dark in all three display conditions.
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Table 5.6: Experiment 4 — The accuracy for each shape and shadow condition tested reported with the standard
errors.

Accuracy for Experiment 4
Condition OST AR VST AR VR

Cube 85% [ .7%] 92% [ .5%] 94% [ .5%]
Dragon 90% [ .6%] 81% [ .8%] 83% [ .8%]

Dark 81% [ .8%] 83% [ .8%] 86% [ .7%]
Light 94% [ .5%] 91% [ .6%] 90% [ .6%]

Origin (0◦) 84% [ .7%] 87% [ .7%] 86% [ .7%]
Rotated (45◦) 91% [ .6%] 87% [ .7%] 91% [ .6%]

Optical See-through AR

We show the average percent of correct response for each of the evaluated main effects in Table 5.6,
and the results of the logistic regression for the OST AR display data are presented in Table 5.7. We
expected participants to be more likely to correctly indicate which object was on the ground as the
height of target objects increased. The improvement of participants’ performance as height increased
is demonstrated statistically by a main effect of height in our logistic regression model (OR = 1.13,
p < .001). An odds ratio of 1.13 indicates that for every 1mm increase in height, the odds of correctly
stating which object was closer to the ground increased by a factor of 1.13.

H4: Does an object’s complexity matter? People were more accurate when assessing surface
contact with the dragon than the cube, with 90% and 85% accuracy on average overall (Figure 5.18).
Our statistical analysis revealed that this relationship was significant since—when averaged across shadow
shading, orientation, and height—the dragon shape in our model was more likely to elicit correct re-
sponses than the cube with an odds ratio of 1.38 (p < .01). As such, people were 1.38 times more likely
to correctly assess surface contact when presented with the dragon. This outcome differs from what
we observed in both the VST AR and VR conditions as reported in Sections 5.4.4 and 5.4.4. In these
devices surface contact judgements to the cube were more accurate than judgements to the dragon .

H5: Does shadow shading method matter? The main effect for shadow (OR = 3.70, p <
.001) indicates that a correct response was 3.70 times more likely when the object was presented with
a light shadow compared to a dark shadow, when collapsed across shape, orientation, and height. On
average, people were 94% accurate when presented with the light shadow and 81% accurate when pre-
sented with the dark shadow (See Figure 5.17). There was also a significant interaction between shape
and shadow (OR = .41, p < .001). Analysis of the shadow simple slopes by shape indicated that,
for both shapes, a light shadow was more likely to yield a correct judgment of ground contact than a
dark shadow (supporting the main effect of shadow). The simple slopes are depicted in Figure 5.19.
However, this effect was stronger for the cube (OR = 5.79, p < .001) than the dragon (OR = 2.37,
p < .001).
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H6: Does object orientation matter? There was a significant main effect of orientation
(OR = 1.96, p < .001) indicating that, overall, participants were more likely to make a correct judg-
ment when the object was rotated 45◦ from its starting position. On average, people’s judgements to
targets at their original orientation were 84% accurate and their judgements to rotated targets were 91%
accurate in the HoloLens. This main effect was qualified by an interaction between object shape and
orientation (OR = .60, p < .01). In order to interpret the interaction, we calculated the orienta-
tion simple slopes for each shape. For both shapes, the likelihood of correctly judging ground contact
was higher for the 45◦ orientation than the 0◦ orientation (supporting the main effect of orientation).
However, this effect was stronger for the cube (OR = 2.53, p < .001) than for the dragon (OR = 1.52,
p < .01).

Figure 5.18: Experiment 4 — Average percentage of correct responses for each target object shape by display
condition: optical see‐through AR (left), video see‐through AR (center), and virtual reality (right). Object
complexity did not inherently benefit surface contact judgements. People’s judgements were significantly more
accurate when presented with the cube than the dragon in both the VST AR and VR conditions. The opposite
was true in OST AR.

Video See-through AR

We show the average percent of correct response for each of the evaluated main effects in Table 5.6. The
results of our statistical analyses are reported in Table 5.7. For VST ARwe again found a main effect of
height (OR = 1.09, p < .001) such that for every 1mm increase in height, the odds of correctly stating
which object was closer to the ground increased by a factor of 1.09. Accordingly, as the height of the
vertically displaced object increased, participants were more likely to correctly indicate which object was
on the ground.

H4: Does an object’s complexity matter? The cube shape was more likely to elicit correct re-
sponses than the dragon (OR = .32, p < .001), suggesting that object complexity is not inherently ben-
eficial to surface contact perception. People’s judgements were 92% accurate on average when assessing
surface contact with the cube and 81% accurate on average when assessing contact with the dragon
(Figure 5.18).

H5: Does shadow shading method matter? The main effect for shadow (OR = 2.47,
p < .001) indicates that a correct response was 2.47 times more likely when the object was presented
with a light shadow compared to a dark shadow. On average, people were 91% accurate with the light
shadow and they were 83% accurate with the dark shadow when evaluating surface contact (See Fig-
ure 5.17). In addition, there was a significant interaction between shape and shadow (OR = .61,
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Figure 5.19: Experiment 4 — Predicted probability of correct response for shape (cube, dragon) and shadow (dark,
light) interactions with 95% confidence. For all three devices a light shadow was more likely to elicit a correct
judgment of surface contact than a dark shadow, regardless of shape. In addition, this effect was stronger for the
cube than for the dragon.

p < .05). Analysis of the shadow by shape simple slopes indicated that the effect of shadow was sig-
nificant for both shapes (See Figure 5.19 (center)). For both shapes, the probability of correct response
was higher when a light shadow was presented compared to a dark shadow. However, this effect was
stronger for the cube (OR = 3.17, p < .001) than the dragon (OR = 1.93, p < .001).

H6: Does object orientation matter? There was no main effect of orientation in VST AR.
People’s surface contact judgements to targets when positioned at their original orientations and when
rotated were 87% accurate on average. The interaction between orientation and shape was also insignif-
icant (See Figure 5.19). In other words, the probability of providing a correct response was not signifi-
cantly different between the two orientations in VST AR. This outcome differs from the results of our
analyses in the OST AR and VR conditions, both of which found that people’s judgements were more
accurate on average to the rotated targets.

Virtual Reality

The average rate of correct response for each main condition is reported in Table 5.6, and the results of
our statistical analyses are reported in Table 5.7. For VR we found a main effect of height (OR = 1.06,
p < .001) such that for every 1mm increase in height, the odds of correctly stating which object was
closer to the ground increased by a factor of 1.06.

H5: Does an object’s complexity matter? The cube was more likely to elicit correct responses
than the dragon (OR = .27, p < .001), suggesting that object complexity is not inherently benefi-
cial to surface contact perception. People’s judgements were 94% accurate on average when assessing
surface contact with the cube and 83% accurate on average when assessing contact with the dragon
(Figure 5.18).

H4: Does shadow shading method matter? The main effect for shadow (OR = 1.68, p <
.001) indicates that a correct response was 1.68 times more likely when the object was presented with a
light shadow compared to a dark shadow. Judgements of surface contact were 90% accurate on average
in VR with the light shadow and they were 86% accurate on average with the dark shadow (See Fig-
ure 5.17). The interaction between shape and shadow was also significant (OR = .64, p < .05). Unlike
our results for Experiment 1, the analysis of the shadow by shape simple slopes indicated that the effect
of shadow was significant for both shapes in VR (See Figure 5.19 (right)). The probability of correct
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5.4 Study 4 - Object complexity does not inherently improve surface contact
judgements, but an object’s orientation can

Table 5.7: Experiment 4 — Results of planned comparisons using binary logistic regression models for each
display condition are displayed. B is the regression coefficient, SEB is the standard error of the regression
coefficient, OR is the odds ratio, and CIOR is the confidence interval associated with the odds ratio. Negative
values for B indicate that the first factor in the comparison was more accurate, whereas positive values indicate
that the second factor was more accurate.

Results for Experiment 4

OSTAR VST AR VR

Predictor B SEB OR [CI]OR B SEB OR [CI]OR B SEB OR [CI]OR

Shape (cube vs dragon) 0.32 ** .11 1.38 [1.12, 1.70] −1.15 *** .10 0.32 [ .26, .39] −1.31 *** .11 0.27 [ .22, .33]
Shadow (dark vs light) 1.31 *** .10 3.70 [3.02, 4.55] 0.91 *** .10 2.47 [2.03, 3.04] 0.52 *** .11 1.68 [1.36, 2.08]
Orien (0◦ vs 45◦) 0.67 *** .10 1.96 [1.62, 2.38] −0.06 .10 0.94 [ .78, 1.14] −0.13 .11 0.88 [ .71, 1.08]

Shape×Shadow −0.90 *** .21 0.41 [ .27, .61] −0.50 * .21 0.61 [ .40, .91] −0.45 * .21 0.64 [ .42, .97]
(cube: dark vs light) 1.76 *** .15 5.79 [4.35, 7.71] 1.15 *** .17 3.17 [2.25, 4.46] 0.74 *** .18 2.11 [1.47, 3.02]
(dragon: dark vs light) 0.87 *** .15 2.37 [1.77, 3.17] 0.66 *** .11 1.93 [1.55, 2.40] 0.29 ** .11 1.34 [1.08, 1.67]

Shape×Orien −0.51 ** .20 0.61 [ .41, .88] 0.20 .19 1.22 [ .84, 1.79] 0.77 *** .21 2.16 [1.43, 3.29]
(cube: 0◦ vs 45◦) 0.93 *** .13 2.53 [1.95, 3.27] −0.16 .16 0.85 [ .63, 1.16] −0.52 ** .18 0.60 [ .42, .85]
(dragon: 0◦ vs 45◦) 0.42 ** .14 1.52 [1.15, 2.02] 0.04 .11 1.04 [ .84, 1.29] 0.26 * .11 1.29 [1.04, 1.61]

Height 0.12 *** .01 1.13 [ 1.11, 1.14] 0.09 *** .01 1.09 [1.08, 1.11] 0.08 *** .01 1.08 [ 1.07, 1.10]
Intercept 2.50 *** .07 12.13 [10.71, 13.83] 2.25 *** .06 9.50 [8.51, 10.67] 2.39 *** .06 10.88 [ 9.69, 12.28]

∗p < .5 ∗ ∗ p < .01 ∗ ∗ ∗p < .001

response was higher when a light shadow was presented regardless of the object presented, although the
shadow effect was stronger for the cube (OR = 2.11, p < .001) than the dragon (OR = 1.34, p < .001).

H6: Does object orientation matter? The main effect of orientation was not significant.
However, there was a significant interaction between shape and orientation (OR = 2.16, p < .001).
On average, people’s judgements to targets at their original orientation were 86% accurate and their
judgements to rotated targets were 91% accurate. Analysis of the orientation by shape simple slopes in-
dicated that a correct response was more likely when the cube was presented at 0◦ than when the cube
was rotated 45◦ (OR = .60, p < .01). Figure 5.19 displays the simple slopes. In contrast, the probabil-
ity of a correct response was higher when the dragon was rotated 45◦ than when it was presented at 0◦
(OR = 1.29, p < .05).

How difficult was each condition?

After completing the experiment, volunteers were asked to rank each device by difficulty and by quality
of graphics as in Experiment 1. All participants ranked the video see-through display as the most diffi-
cult device (6/6) and the device with the lowest quality of graphics (6/6). In contrast, the optical see-
through display was most consistently rated as the easiest display (4/6) and the display with the highest
quality of graphics (5/6). Ratings were also corroborated by comments at the end of the survey. Both
P2 and P4 stated that the HoloLens “felt more clear,” and P1 commented that “the resolution of the Zed
was really painful for my eyes.”
Participants were also asked about the strategies they used to discern surface contact. P3 commented

that the dragon was “easier but more mentally exhausting... since the dragon moved.” Their comment
implied that they had to visually search for a shadow before making a judgment. Their complaint is
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5.5 Summary

reasonable since, as the shape of the dragon was asymmetrical, changes in orientation were more pro-
nounced (See Figure 5.16). P3 further bemoaned of the dragon that “when too detailed it was over-
whelming, [but] when not detailed enough it became equally difficult to use.” P2 commented that the
dragon provided more “pockets of shadow,” which altered their strategy such that “ It wasn’t just watch-
ing an edge, more like watching for shape and quantity of shadow.” This comment hints that people may
have been able to use additional depth information provided by the dragon (e.g., shape from shading)
to inform their judgments of surface contact.

5.4.5 Discussion
In Experiment 4, for both AR display conditions, we again found that people’s judgments of surface
contact benefited from the presence of non-photorealistic, light cast shadows. However, in contrast to
our third study, we also found that light shadows improved surface contact judgments in VR. Look-
ing at shape× shadow interactions for the cube in Experiment 3 and Experiment 4 in VRmay provide
some insight into this difference in shadow effectiveness for VR between experiments. Both experi-
ments evaluated the same cube object, but the object was presented at a new orientation in Experiment
4. Because we found a significant difference in orientation for the cube and because we found an ef-
fect of shadow shading condition in Experiment 4, we infer that the change in orientation for the cube
made the light shadows more important in VR.
Our hypothesis that surface contact judgments for the dragon would be worse than the cube was

partially supported. Although we found better performance with the cube compared to the dragon
in both VST AR and VR, we found better performance with the dragon in OST AR.With the cur-
rent experiment alone, we are unable to explain why people’s judgments for the dragon in the OST
AR device alone were significantly more accurate than those for the cube. However, the current study
provides evidence that more complex geometries do not inherently benefit surface contact perception.
Although complex 3D shapes can provide more depth information via self-shading cues, it appears
that other factors such as the bottom edge of the object may be more important. However, additional
future research is needed to verify this claim.
Given the effects of orientation that we found in both the OST AR and VR displays, it will be im-

portant to consider the orientation of objects in MR in future application development. This finding
is in line with prior research which shows that the angle from which we view a 3D object may affect
spatial perception judgments related to that object[6, 261]. The lack of difference in orientation for the
video see-through conditions requires further investigation.

5.5 Summary

The results of our research provide evidence that nontraditional shading techniques for rendering shad-
ows in AR displays may enhance the accuracy of one’s perception of surface contact. This finding im-
plies a possible tradeoff between photorealism and accuracy of depth perception, especially in OST AR
displays. However, it also supports the use of more stylized graphics like non-traditional cast shadows
to improve perception and interaction in AR applications. We also find that geometric shape can affect
one’s perception of ground contact in subtle but tangible ways.
In the current work, we make several contributions by evaluating how people’s judgments are af-

fected by virtual object shape, orientation, and shadow shading in three different MR displays. We
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demonstrate that non-photorealistic, light shadow shading can enhance surface contact judgments. We
show that these judgments are complex and affected by an object’s shape as well as orientation. And we
conduct fundamental groundwork that encourages the further study of non-photorealistic rendering
techniques to improve spatial perception inMR.
Perception of surface contact is important for determining the scale of space and for governing our

interactions within space. Cast shadows provide important information about surface contact, and
thus provide important cues to our visual system for perceiving and acting with our surroundings [5,
333, 467]. In certain types of MR displays, rendering cast shadows is difficult. Therefore, this paper
manipulated cast shadow rendering across different object shapes in MR displays. Our goal was to see
if a unified framework would emerge to help designers better design for accurate spatial perception in
MR, given the difficulties with rendering realistic, dark shadows in current technology.
We hypothesized that people would be more likely to correctly perceive surface contact when shad-

ows were illuminated with light rather than dark color values. This hypothesis was based on prior
work [5, 228]. We found support for these hypotheses (H1 andH3) for two types of AR devices across
two experiments. We also hypothesized that surface contact judgments would be complex and affected
by the shape of an object associated with a given surface (H2). Loosely speaking, we formed this hy-
pothesis around the idea that if a shadow forms visible glue with a surface, then the object to which that
glue is applied would also affect how well the shadow worked [295, 467]. We found support for this
hypothesis as well, although we evaluated relatively simple object shapes in our first study. In our sec-
ond study, we then investigated the effect of an object’s complexity and orientation on surface contact
judgments. Consistent with the reasoning above, we hypothesized that orientation would affect the
perception of ground contact (H5). We found that orientation mattered for surface contact judgments
in OST AR and VR, but we were unable to find a difference in VST AR, only partially confirming this
hypothesis. We also hypothesized that object complexity would matter, and that it would be more dif-
ficult to perceive surface contact with more complex shapes (H4). This hypothesis was confirmed in
VST AR and VR, but not for OST AR, where the opposite was true.
One finding that we can extract from this set of experiments is that non-photorealistic (light) shad-

ows will likely work well across MR devices if the application can support such shadows. This finding
was clear in both AR displays, and we saw this effect in VR in our second experiment. There are many
AR applications in which perception may be important, but photorealism is not as critical (e.g., AR
games [164, 227] or training applications where perception is more critical than realism [180, 284]).
Our findings give designers some latitude for general design.
Our findings on shape, complexity, and orientation are more complicated. It may be that they do

not generalize well across MR devices and that general guidelines are not appropriate here, but more
work is needed. For object shape, we found only one case across all three MR devices where people’s
judgments were more accurate for the sphere than another target shape (where judgments were more
accurate for the sphere than the icosahedron in VR). Do et al. [104] found that people’s depth judg-
ments to spheres were more sensitive to changes in luminance than other shapes in mobile AR. Both
our results and those of Do et al. [104] may caution against the use of spheres for AR applications that
require accurate spatial perception. Finally, our findings on orientation may have implications for the
development of MR applications. The angle from which we view a 3D object can affect spatial per-
ception judgments related to that object [6, 261]. For the development of MR applications, however,
understanding how specific shapes and orientations of objects influence where people perceive them to
be positioned in space may be important.
A limitation of our method is that, although we can assert with confidence the conditions under
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which surface contact judgments for light shadows are better than for dark shadows, our methods
do not tell us that dark shadow contact judgments are bad in an absolute sense. We employed a psy-
chophysical technique for the reason that we were interested in determining whether light shadows
were better than dark shadows. We observed a problem with objects being floaty in AR, we acknowl-
edged problems with rendering shadows in AR, and then we attempted to understand it in the larger
context of which tools are available to us in anMR setting to try to offer a solution.
Another limitation is that we did not manipulate object shading in our experiments because we were

more interested in the effect of an object’s shape on ground contact judgments. However, given the
sensitive effects of shadow luminance values on surface contact judgments observed in our studies, it
would be reasonable to claim that our results were influenced by the color of our target objects. Similar
prior research on surface contact perception inMR has evaluated the effect of differences in object and
shadow shading on people’s surface contact judgments [5]. Based on this prior research, we elected to
use a median gray value to shade all of our test objects to mitigate effects of object shading, although we
recognize that this is an imperfect solution.
Neither the current work nor the prior work conducted by Adams et al. [5] manipulate the color

of background surfaces on which target objects are displayed. Yet just as an object’s shading may influ-
ence our spatial perception of that object in space [6, 102, 104, 372], so too may the backdrop upon
which it is presented [352]. In our case, we used the same, median blue tablecloth throughout both
experiments. Further work will need to test background surfaces of varying color and texture to fully
understand how these may interact with shadows inMR devices.
This paper demonstrates that there are advantages to non-photorealistic rendering of cast shadows

for surface contact judgments in MR.We found that judgments were better with light shadows in two
types of AR devices and in VR under certain conditions. In arriving at this finding we experimented
with a variety of object shapes, orientations, and complexities. Our findings suggest that under certain
circumstances it may be desirable to use light shadows inMR applications.
Because the light shadows in our current study enhanced people’s accuracy in surface contact judgments—

it may be worthwhile to evaluate whether more ambitious non-photorealistic rendering approaches fa-
cilitate spatial perception in AR. Evaluating colorful shadows, like those designed by Ooi et al. [345],
for ARmay be a desirable starting point. If more research findings are able to confirm the benefits for
non-photorealistic rendering for spatial perception in AR, then we may encourage the use of more
stylized graphical elements for designers and developers of MR applications. However, we must be cau-
tious about arbitrarily applying non-photorealistic effects to MR simulations before evaluating them,
especially given the results of Cidota et al. [81], who showed that blur and fade may have adverse effects
on action-based depth judgments in augmented reality in personal space.
Our current findings may have ramifications for egocentric depth judgments in MR displays given

prior work [333], but at present we can only generalize our findings to surface contact judgments. In
future research, it may be worthwhile to evaluate how object shape and cast shadow shading manipu-
lations affect more direct measures of depth perception. Rosales et al. [397] demonstrated that, in the
absence of cast shadows, people perceive an object that is placed above the ground incorrectly as farther
away. This may help explain some of the effects of overestimation found in prior AR depth perception
research, especially given that many assessments use floating objects for assessment [360, 429, 456]. In
future work, we intend to evaluate how photorealistic and non-photorealistic shadows affect egocentric
depth judgments in MR displays.
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Part IV

Depth Perception



6 Egocentric Depth Perception inMR

The ability to perceive absolute distances to objects in AR is critical to many applications that require
an understanding of scale, such as environmental simulations for training and architectural design.
Nonetheless, open questions remain about human spatial perception in augmented reality and the
depth cues that are used when virtual and real worlds coexist. For example, researchers have yet to iso-
late what properties of the visual information provided by augmented reality displays affect people’s
ability to correctly perceive virtual objects in real spaces (See Section 2.4). In Aim 2 of the dissertation
we hope to address these concerns.
Our investigation into the influence of realistic and nonrealistic rendering approaches on depth

perception in AR began in Chapters 4 and 5 with a series of studies that investigated the influence of
shadow shading and other object properties on surface contact perception. In these studies, we found
that the absence of a cast shadow resulted in less confident surface contact judgments between an ob-
ject and a surface beneath it (Section 5.1). We then found evidence that photorealistic rendering ap-
proaches for cast shadows did not further enhance people’s surface contact judgements. On the con-
trary, a non-photorealistic cast shadow shading method—a white shadow—consistently improved
people’s surface contact judgments in virtual reality, optical see-through AR, and video see-through
ARHMDs. This research, which was conducted for Aim 1 of the dissertation, also raised two ques-
tions: (1) to what extent does the vertical displacement of an object above the ground influence peo-
ple’s depth judgements and their ability to use differently rendered cast shadows as a depth cue? and (2)
do our results on surface contact perception generalize to other measures of depth perception?
Prior research has shown that the vertical position of an object (e.g., whether an object is positioned

on or above the ground) can influence where people perceive the object in space [332, 333, 397]. Even
when objects are floating well above the ground such that they are disconnected from their cast shad-
ows, cast shadows still play an important role in determining the position of the object in space since
they allow a viewer to estimate the position of the object relative to other geometric features and sur-
faces within the environment [228, 255, 332].
In our previous research, we only evaluated subtle vertical displacements of objects since surface con-

tact judgments were our measure of interest. By using absolute egocentric distance estimations (i.e.,
judgements of distances from the viewer to an object in space) we may also extend our understanding
of the influence of cast shadows on depth perception to objects that are positioned above the ground.
For user interaction in ARHMDs, it is particularly important to understand howmid-air virtual ob-
jects are perceived given the prevalence of user interfaces in AR that are positioned above the ground
for ease of viewing. Distortions in depth perception of virtual objects may make interactions more
challenging or frustrating for AR users.
Evaluating surface contact judgments is not an approach that is commonly used to investigate depth
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6.1 Motivation and Goals

perception or the perception of spatial layout. Our first experimental protocol was based off the work
of a single publication, Madison et al. [295]. And the experimental protocol we employed for the sub-
sequent studies relied on a psychophysical approach (specifically a temporal 2AFC procedure). Al-
though alternative forced choice experiments have been employed in the past to study depth perception
judgements from a viewer to objects in space [48, 104, 161, 451, 457], they have not been used to study
surface contact perception. The dearth of research that directly evaluates surface contact perception
makes it difficult to determine how our results may generalize to other measures of depth perception.
As such, in Aim 2 we extend the results of our prior research on surface contact perception to a more
prevalent measure of depth perception by conducting two evaluations on absolute egocentric distance
judgements in AR. The investigation of absolute distance perception may allow us to draw compar-
isons between our research on surface contact perception and non-photorealistic shadow shading to a
larger body of literature.
The current work was the first to evaluate absolute distance perception in either device. In our first

study (Section 7.1), we asked participants to verbally report distance judgments to grounded and float-
ing targets that were rendered either with or without a cast shadow along the ground. Then, in our
second depth perception study (Section 7.2), we evaluated people’s distance judgements to the same
targets with either realistic shadows or non-photorealistic graphical elements beneath them.
The findings from our initial depth perception study suggest that currently available video see-

through displays may induce more distance underestimation than their optical see-through counter-
parts. Interestingly, the presence of cast shadows improved depth judgments for both grounded and
floating target objects, although floating targets were still consistently perceived as farther away even
when a shadow was present.
Informed by the outcomes of our prior surface contact studies, in the second depth perception ex-

periment we hypothesized that target objects presented with non-photorealistic graphical elements, in
lieu of shadows, would elicit distance judgments with equivalent accuracy to target objects that were
presented with realistic shadows. Our findings offer a two-fold contribution that strengthens the foun-
dation for developing more inclusive augmented reality (AR) applications. First, they reinforce the
validity of our prior research on surface contact perception. This is achieved by demonstrating that the
observed effects in those studies were not simply due to artifacts of experimental design (e.g., the exper-
imental task or characteristics of the virtual stimuli)—but rather reflect a genuine relationship between
surface contact perception and spatial perception. Second, our findings provide compelling new evi-
dence that achieving accurate spatial perception in AR environments does not require highly realistic
graphics. This has significant implications for accessibility, as prior research by Zhao et al. [517] sug-
gests that individuals with vision impairments often benefit from the use of stylized renderings, such as
edge enhancements and contrast amplification techniques in AR.

6.1 Motivation and Goals

Few comparisons of depth perception between stereoscopic VST AR and OST AR head-mounted dis-
plays exist [6, 41, 311]. However, direct comparisons of how different AR displays influence spatial
perception can provide important insights into how the technical tradeoffs between ARHMDs influ-
ence perception. Direct comparisons are also beneficial for establishing developer guidelines for where
and how virtual objects should be rendered in real spaces to enhance depth perception.
As such, in the following experiments we evaluated people’s depth perception using absolute ego-
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Table 6.1: Specifications from the two augmented reality displays employed in the current study are presented.

Display Specifications Varjo XR-3 HoloLens 2

field of view (FoV) 115× 90◦ 43× 29◦

focus: resolution per eye (pixels) 1920× 1920 2048× 1080
focus: pixel density (PPD) 70 47
peripheral: resolution per eye (pixels) 2880× 2720 -
peripheral: pixel density (PPD) 30 -

refresh rate (Hz) 90 60
weight (g) 980 566
price (USD) 5500 3500

centric distance judgments in two augmented reality displays: the Microsoft HoloLens 2 and the Varjo
XR-3. Although both devices provide augmented reality via HMD, the technology behind them con-
siderably differs.
The Varjo XR-3 functions both as a pure virtual reality device and a video see-through AR display.

As a result, it shares similar ergonomic and display properties to contemporary virtual reality displays—
although the XR-3 boasts exceptional video see-through capabilities. In contrast, the HoloLens 2 is a
lightweight display that relies on optical see-through technology to create augmented reality. Instead
of using a display panel to render virtual overlays, the HoloLens 2 projects overlays onto a plastic shield
in front of the viewer’s eyes. As a result, in the HoloLens viewers have an unaltered view of the real
world, but the augmented field of view in OST AR is much smaller. For reference, a more thorough
comparison between the two device specifications can be seen in Table 6.1.
The unique mechanical properties and rendering approaches of these devices have ramifications for

how virtual objects are rendered and integrated into real world scenes. One consequence of employing
video feed to capture real world images for VST AR is that cameras can introduce optical aberrations,
like lens distortions, to the real world image. In contrast, although OST AR displays do not distort
real world images, the use of additive light to render virtual overlays causes virtual objects to appear
transparent. The darker the color value; the more transparent the overlay. In certain lighting scenarios,
like outside on a sunny day, this may cause pictorial depth cues, like cast shadows, to be less salient or
even imperceptible.

Figure 6.1: The optical see‐through (OST) and the video see‐through (VST) augmented reality display evaluated in
Experiments 5 and 6. On the left is the Varjo XR‐3 (VST AR) and on the right is the Microsoft HoloLens 2 (OST
AR).
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In addition to AR device, we carefully selected two attributes of virtual targets to better understand
how these attributes influence the perception of absolute distances. The first was the vertical position
of a virtual object. In order to make gazing at overlays more comfortable, AR applications may present
virtual objects as floating, or vertically displaced above the ground (e.g., Google Maps AR). Perhaps be-
cause of this, much of the prior research investigating depth perception in AR has used floating virtual
targets for assessment [102, 135, 175, 255, 360, 361, 429]. However, the decision to evaluate floating
targets may have an undesired effect on people’s depth judgments.
The distal horizon as well as the height of an object relative to the ground influences depth percep-

tion judgments [314, 315]. As such, the position of an object relative to a surface, like whether the ob-
ject is floating in air or anchored on the ground, alters where we perceive that object to be positioned in
space [332, 352]. Because the human visual system treats floating objects as though they are located on
the ground plane, floating targets are typically perceived as farther away [144, 146]. In augmented re-
ality, as well, the influence of optical contact on distance perception has been demonstrated in the Mi-
crosoft HoloLens 1 [397]. Specifically, Salas-Rosales and colleagues demonstrated that floating virtual
targets were perceived as on the ground but farther away in AR when no surface contact information,
like cast shadows, was present.
The second factor we evaluated was cast shadow. In this dissertation, we have found that the pres-

ence of a cast shadow improves the confidence of people’s surface contact ratings [5]. For floating tar-
gets, prior research by Ni et al. has shown that the presence of a cast shadow can mitigate the influence
of optical contact in virtual environments [333]. As a result, people give more accurate egocentric dis-
tance judgments to floating targets when cast shadows are present. Motivated by these findings, a grow-
ing body of depth perception research in augmented reality has looked at the effects of cast shadow on
floating targets [102, 135, 175]. However, none of this prior research has looked at the effects of cast
shadow for targets placed on the ground. As such, it is difficult to extrapolate the results of this prior
research to general design guidelines for AR applications, which may be expected to place virtual ob-
jects at various heights.
In addition, all of the prior research on the influence of cast shadows on distance perception have re-

lied on perceptual matching, a relative—not an absolute—measure of distance perception [121, 132].
Conducting distance estimation research using different evaluation methods is important for gener-
alizing effects, since distinct experimental paradigms require participants to encode different spatial
information [153, 232]. We bridge this gap in literature by evaluating the influence of cast shadows on
depth perception using an absolute measure of distance: verbal report.

6.2 GeneralMethods

In order to evaluate how shadow shading methods affect a viewer’s distance estimations in head-mounted
mixed reality displays, we conducted two experiments across two unique display conditions: an opti-
cal see-through augmented reality display (the Microsoft HoloLens 2) and a video see-through aug-
mented reality display (the Varjo XR-3). The subsequent sections discuss the technical setup of our
experiments (Section 6.2.1) as well as the procedure of our experiments (Section 6.2.2). For rendering
shadows, we employed the same methods that were used in our surface contact perception experiments
(Section 4.2.2).
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6.2.1 Materials
The experiment was conducted in a 36 x 26 x 9 ft room that provided a 36 ft linear distance forward
for placing targets. A university classroom was reserved throughout the duration of the experiment and
tables aligned both sides of the participant during the experiment. Images of the room can be seen in
Figure 7.2.
We conducted the experiment in an optical see-through augmented reality HMD and a video see-

through augmented reality HMD. For the OST augmented reality display condition, we employed
the Microsoft HoloLens 2. The HoloLens 2 weighs 566g and has a field of view (FoV) of 43◦ × 29◦.
Position tracking in the HoloLens 2 is performed by its native inside out spatial tracking method. For
the VST augmented reality condition, we used the Varjo XR-3. The XR-3 weighs 980g and has a FoV
of 115◦ × 90◦. For position tracking, the tethered display used the SteamVR 2.0 tracking system in
conjunction with the Varjo’s native depth sensors, which relied on LiDAR and RGB camera fusion.
The Varjo XR-3 functions both as a pure virtual reality device and a VST AR display. As a result,

it shares similar ergonomic and display properties to contemporary virtual reality displays—although
the XR-3 boasts exceptional video see-through capabilities. In contrast, the HoloLens 2 is a lightweight
display that relies on OST technology to create augmented reality. Instead of using a display panel to
render virtual overlays, the HoloLens projects overlays onto a plastic shield in front of the viewer’s eyes.
As a result, in the HoloLens viewers have an unaltered view of the real world, but the augmented field
of view in OST AR is much smaller and virtual overlays appear translucent since these displays rely on
additive light for rendering. Without the ability to subtract light, OST AR displays are unable to ren-
der dark color values, which instead become increasingly transparent as they approach black. A more
thorough comparison between the two device specifications can be seen in Table 6.1.
Applications for both devices were developed in Unity version 2020.3.13f1 with the C# program-

ming language. Shaders to render hard shadows were programmed using a variant of the HLSL lan-
guage that is compatible with the Unity game engine. The cast shadow shader was developed to render
shadows with specified color values. Because the HoloLens 2 is unable to render black, a shadow with a
grayscale RGB value of 36 was selected. The same shaders were used for both devices.

6.2.2 Procedure
Participants were met at the door of the classroom, where they were given a description of the exper-
iment, an informed consent form, a proof of payment form, as well as their monetary compensation
for volunteering to participate in the study. The study followed Covid-19 safety protocols set by the
university. As such, all participants were required to wear masks and equipment was sanitized between
participants.
Before introducing the volunteer to the augmented reality equipment, the experimenter familiarized

the participant with basic distance measures in an adjacent hallway. Depending on the participant’s
preference, either metric or imperial units of measure were reviewed using a retractable tape measure.
Reviewed distances did not exceed 1 meter or 1 yard. After the participant expressed that they were
comfortable with the distances, the experimenter guided them back into the classroom.
The participant was then outfitted with the first head-mounted display, and the protocol was de-

scribed to them. The were told that “target object would appear at various distances” along the floor
relative to the viewer. Each target object appeared for five seconds before disappearing. At which point,
the participant called out the estimated distance to the target. After the experimenter transcribed the
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participant’s response, the next trial commenced. The beginning of a subsequent trial was denoted by
the sound of a beep. The participant was given no feedback on their performance during the experi-
ment.
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Isolated facts and experiments have in themselves
no value, however great their number may be.
They only become valuable in a theoretical or prac-
tical point of view when they make us acquainted
with the law of a series of uniformly recurring
phenomena, or, it may be, only give a negative
result showing an incompleteness in our knowledge
of such a law, till then held to be perfect.

Hermann von Helmholtz
7 Investigating Egocentric Depth Perception inMR

This research investigates how realistic and non-realistic rendering affect depth perception in aug-
mented reality. It builds upon the findings of our earlier research on surface contact perception, in
which we demonstrated that non-photorealistic rendering approaches for cast shadows could improve
surface contact judgments compared to judgements made with realistic or absent shadows. In the sec-
ond aim of this dissertation, we extend this work to measures of egocentric distance perception to bet-
ter determine if this phenomenon generalizes to another dimension of spatial perception.
Over two experiments, we measure absolute egocentric distance judgments (estimating distances

from the viewer to an object) to targets with different shadow rendering conditions in an optical see-
through and a video see-through head-mounted display. In doing so, we hope to expand our under-
standing of how shadows affect depth perception in general and how the unique graphics limitations of
these different AR devices impacts the utility of shadows for depth perception.

Figure 7.1: In Study 5, participants viewed spherical targets that were positioned on and above the ground.
These targets were either rendered with or without a cast shadow.

7.1 Study 5 - Distance Perception inMixed Reality

In our first egocentric distance perception study, we used verbal report to obtain absolute measures of
people’s distance perception judgments in two AR devices: the Microsoft HoloLens 2 and the Varjo
XR-3 (Figure 6.1). We present targets at various distances within action space, and targets are either
presented on or above the ground (Figure 7.1). Each target object was rendered either with or with-
out a cast shadow. We anticipated that judgments of distance would be underestimated in both AR
displays, but that there would be more underestimation in VST AR than in OST AR. Based on prior
research on the influence of height in the visual field and on the influence of cast shadows, we antici-
pated that floating objects without a cast shadows would be perceived as farther away than targets on
the ground when shadows were absent.
In total, we developed four hypotheses for the current experiment:
H1: Targets will be underestimated in both AR devices.
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Table 7.1: Independent and dependent variables of our experiment

Independent Variables

observers 24 (random)
H1 distance 3 3, 4.5, 6
H2 shadow 2 yes, no
H3 height 2 0, 0.2m
H4 display 2 vst ar, ost ar

repetition 3 1,2,3

Dependent Variables

distance judgments (meters)

H2: When a shadow is present, people’s distance judgments will become more accurate.
H3: There will be an interaction between shadow and target height, such that there will be a dif-

ference between floating and grounded objects without shadows, but no difference when shadows are
present.
H4: The video see-through display will induce more distance underestimation than the optical see-

through display.

7.1.1 Participants
Twenty-four students and staff from Vanderbilt University were invited as volunteers for this exper-
iment in exchange for 10 USD and 45 minutes of their time. The average age was 28.2± 8.75 years
(Min: 21, Max: 68). Sixteen volunteers were male and nine were female. All participants experienced
both the optical see-through AR display and video see-through AR display for a within-subjects ex-
perimental design. Our methods were approved by the local institutional review board, and written
consent was obtained from volunteers prior to participation. All participants had normal or corrected-
to-normal vision.

7.1.2 Design
To address our hypotheses, we utilized a 2 (display) × 2 (shadow shading) × 2 (target height) × 3 (target
distance) within-subjects factorial design such that all conditions were presented to every participant.
Distance judgments were obtained through verbal report.
The order in which the participants experienced the AR displays was counterbalanced such that half

of the volunteers experienced the HoloLens 2 first and half of the volunteers experienced the Varjo XR-
3 first. To reduce potential learning effects between display conditions, participants were moved to the
opposite side of the room and rotated 180◦ before beginning the second part of the experiment with the
other AR display. A participant standing on opposite sides of the room with each AR display can be
seen in Figure 7.2.
We selected a sphere to be the virtual target (Figure 7.1). The virtual sphere measured 20 cm in di-

ameter and was rendered with a middle gray RGB color value of 128. Participants viewed the sphere
presented at three distances (3m, 4.5m, and 6m). Spheres were either placed on or above the ground
at 0.2m. A height of 0.2mwas selected to draw comparisons between the current study and that con-
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ducted by Salas-Rosales and colleagues [397], which also presented targets at 0.2m above the ground
plane.
Prior research has shown that the angle at which a virtual light is positioned influences distance per-

ception judgements [102, 135]. Therefore, we displayed spheres with or without a cast shadow, which
was placed immediately beneath the object when it was present. This approach to rendering cast shad-
ows is referred to as “drop shadow” in game development and in prior AR research [102]. For each
display, this resulted in twelve unique combinations of stimuli.
Except for device, all other factors (i.e., shadow shading, target height, target distance) were pseudo-

randomized so that a participant viewed each unique combination once before experiencing the same
combination again. All unique combinations were repeated three times, which resulted in a total num-
ber of 36 trials per display. Each participant completed a grand total of 72 trials across both displays.
With 24 subjects, a total of 1, 536 trials were collected overall.

7.1.3 Statistical Analysis
Before performing statistical analyses on our data, we converted all recorded distance estimates to me-
ters. The distribution of participants’ continuous response data was non-normal, which was exhibited
by a positive skew in the data distribution. A Shapiro-Wilk test (W = 0.943, p < 0.001) and QQ plot
inspection of the residuals from our model further revealed that the distribution of the residuals was
not normally distributed. Fortunately, linear mixed models are robust to violations of distributional
assumptions [408].
Because the population’s responses for verbal reports of distance should have a Gaussian distribu-

tion, we assume that the underlying distribution of responses from the population is normal for our
analyses [11]. Furthermore, to avoid overfitting our predictor values to the current data set, we do not
fit our sample data to another distribution [12] nor do we transform our observed data to ensure the
results of our analysis are interpretable [50]. Overfitting could compromise our ability to generalize the
current results to other samples of the population.
We used a linear mixed-effects model (LMM) to investigate the influence of shadow, target height,

and distance on people’s distance judgments. Linear mixed models are a form of generalized linear
regression that assume a normally distributed dependent variable. They are appropriate for repeated-
measures designs because they allow for accounting of both within- and between-participant variability
[386]. This is particularly important for examining verbal reports of distance estimates, which can be
variable across individuals [248, 283, 327]. LMMs also permit model specification, so our analysis in-
cluded only the interactions that were hypothesized a priori. This increased our power to detect differ-
ences.
Outside of factors related to our hypotheses, we also included experimental block order and the vi-

sual context of the room—from participants standing on either the left side of the room or the right
side of the room to view targets—in our LMM to better understand how these counterbalanced, ex-
perimental factors would influence people’s judgments. Both block order (2 levels: first, second) and
visual context (2 levels: left, right), were treated as categorical factors. Further, we included interactions
between device and experimental block as well as between device and visual context to ensure that these
factors did not distort our results pertaining to device differences.
To account for individual variability in distance judgment behavior over repeated measures, we in-

cluded a random intercept (μ0). We then used Satterthwaite approximation via the lmerTest package
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Figure 7.2: A participant views the experiment in the OST AR condition (left) and the VST AR condition (right).
For each device, the experiment was conducted on opposite sides of the classroom.

[250] to calculate significance levels. The general regression equation is depicted in Equation 7.1 be-
low:

Υ = B0 + B1(device) + B2(shadow) + B3(height)
+ B4(distance) + B5(order) + B6(context)
+ B7(shadow× height) + B8(device× order)
+ B9(device× context) + μ0

(7.1)

We used the results of this analysis to answer our research questions: 1) whether people’s distance
judgments would be underestimated (i.e.,H1); 2) whether peoples distance judgments would improve
with the presence of shadows (i.e.,H2 the main effect of shadow); 3) interactions between target height
and shadow (i.e.,H3); and 4) whether distance misperception would be more severe in the Varjo XR-3
than the HoloLens 2 (i.e.,H4 the main effect of device).

7.1.4 Results
Participants’ distance judgments were recorded and statistically analyzed in meters. However, in the
following section we also report these values when converted into ratios to facilitate comparisons be-
tween the current work and prior research. To create ratios, participants’ verbal distance estimates were
divided by the actual distances to the target for a given trial. A ratio less than 1 indicates underestima-
tion of distance, and a ratio greater than 1 indicates overestimation. Overall, distance judgments were
somewhat variable with a mean distance estimate across participants of 3.722m (SD = 1.566, Min =
0.914, Max = 10). A mean estimate of 3.722m corresponds to a distance ratio of 0.827 or 17.3% under-
estimation.

The influence of experimental design: block order and environmental context

Although we counterbalanced our experimental factors, we nonetheless wanted to account for any
variance in people’s responses that was due to the order of experimental block experienced or due to
the visual context provided by the room (i.e., whether the participant viewed the space from the left or
right side of the room) by including them within our LMM. Based on prior depth perception studies,
effects of experimental block order [132, 518] and visual context may be expected [132, 258, 464, 465].
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Table 7.2: Mean egocentric distance judgments in meters for each device. Values in parentheses are standard
errors.

Each Distance All Distances
Display 3 4.5 6

All 2.43 (.03) 3.71 (.05) 5.03 (.06) 3.72 (.04)
HoloLens 2 2.47 (.04) 3.83 (.07) 5.24 (.09) 3.85 (.06)
Varjo XR-3 2.39 (.05) 3.78 (.06) 4.82 (.08) 3.60 (.05)

However, a significant interaction between device and either of these experimental design factors could
convolute our planned analysis of device differences.
The analysis revealed a significant effect of block order (B = 0.126, SE = 0.035, p < 0.001) and

a significant effect of visual context provided by viewing the room at two different locations (B =
0.353, SE = 0.034, p < 0.001). The effect of order indicates that people’s responses were on average
0.126m farther in the second block of trials. The effect of environmental context indicates that peo-
ple’s responses were 0.353m farther given the environmental context provided by standing at the right
side of the room (Figure 7.2, right) than the context provided by the left side of the room (Figure 7.2,
left). Fortunately, our analysis did not show an interaction between device and order nor did it show an
interaction between device and visual context.

Distance judgments will be underestimated (H1)

Participants underestimated distances to all targets by 17.6% on average (MRatio = 0.824, SD =
0.176, Min = 0.305,Max = 2.54). As shown in Figure 7.3, participants increased their egocentric
distance judgments to virtual targets as the actual distance to the targets increased, supported by the sig-
nificant main effect of distance (B = 0.869, SE = 0.014, p < 0.001). Participants estimated distances to
be approximately 0.87m farther for every meter of increase in actual distance to the sphere, on average.

Distance judgments will be more accurate when a shadow is present (H2)

Our analysis supported this prediction. Distance judgments were significantly more accurate when
spheres were rendered with a shadow when compared to judgments to spheres without a shadow. This
was shown by a significant main effect of shadow (B = 0.083, SE = 0.034, p < 0.05), which indicated
that participants estimated distances, on average, were 0.08m farther when a cast shadow was present.
Overall, participants underestimated distances to targets rendered with shadows by 16.7% and they
underestimated distances to targets without shadows by 18.6%.

There will be an interaction between shadow and target height (H3)

A priori, we anticipated that distance judgments to floating spheres would be similar to those posi-
tioned on the ground when shadows were present. Conversely, we predicted that distances to floating
spheres would be judged as farther than those positioned on the ground when shadows were absent.
However, our analysis showed no significant interaction between sphere height and the presence of a
shadow.
Instead, our linear mixed model revealed main effects of both shadows (Section 7.1.4) and height

(B = 0.349, SE = 0.174, p < 0.05) with no interaction between the two. When spheres were
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Figure 7.3: Judgments for the HoloLens 2 and Varjo
XR‐3 at each target distance fit with linear regression,
featuring swarm plots of raw datapoints. The dotted line
represents veridical performance.

Figure 7.4: Estimated marginal means (EMMs) for
Shadow & Height condition contrasts with raw EMM
values plotted

floating above-ground they were perceived as farther away, with 16.72% underestimation for above-
ground spheres and 18.5% underestimation for on-ground spheres. The differences in judgments based
on height and on shadows are illustrated by Figure 7.4 Because we found main effects of shadow and
height but no interaction between the two, we can conclude that target shadows influenced distance
judgments, regardless of target height.

There will be more distance underestimation in the VST AR display than the OST AR
display (H4)

As shown in Figure 7.3, egocentric distance judgments to virtual spheres were underestimated in both
devices; distances were underestimated by 15.1% in the HoloLens 2 (MRatio = 0.849, SD = 0.253, Min =
0.305,Max = 2.54), and distances were underestimated by 20.2% in the Varjo XR-3 (MRatio = 0.798, SD =
0.245, Min = 0.333, Max = 2.54). Our statistical analysis indicated that this difference was signifi-
cant. We found a main effect of device such that participants estimated distances to be 0.25m farther
in the HoloLens 2 compared to the Varjo XR-3 (B = 0.250, SE = 0.035 p < 0.001). As such, dis-
tance underestimation was less severe in the optical see-through display (HoloLens 2) than the video
see-through display (Varjo XR-3).

7.1.5 Discussion
The perception of scale through AR displays is an important problem that should be understood if
AR is going to be successfully deployed in applications involving action that takes place over several
meters. In this paper, our goal was to understand how AR displays affected the perception of scale,
and to understand which characteristics of virtual objects affected that perception when those objects
are seen in the context of the real world. In particular, we used the Microsoft HoloLens 2, an optical
see-through display, and the Varjo XR-3, a video see-through display, to attempt to understand the
perception of scale and characteristics of virtual objects. These two display types are both state-of-the-
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art for their respective categories, so if we find characteristics that are similar for both displays, then we
likely have a better understanding of the perceptual issues around ARmore broadly.
First, distance judgments across both displays were underestimated, a finding that supports our first

hypothesis (H1). We found 17.6% underestimation, on average. This result reinforces a growing body
of literature evaluating egocentric distance perception in AR head-mounted displays that has found
distance estimates in action space (2m - 30m) to be underestimated [109, 132, 222, 368, 397, 455, 478,
479]. However, participants were more accurate at estimating distances in the HoloLens 2 than in the
Varjo XR-3, with an average of 15.1% underestimation in the HoloLens 2 and 20.2% underestimation
in the Varjo XR-3, supporting hypothesis (H4).
This latter result confirms prior work done in both VR and AR. First, the Varjo XR-3 is heavier

than the HoloLens 2 (980 g vs. 566 g), and weight of devices is a known factor in distance underesti-
mation in VR [501]. Second, the field of view of the Varjo XR-3 is narrower than the field of view of
the HoloLens 2, which allows nearly unobstructed viewing of the real world scene. Field of view is also
a factor in distance underestimation in VR [64, 211, 212] and AR [368]. Finally, any misalignment
of the cameras used in a video see-through display may cause disparities resulting in the depth of the
scene being distorted [31]. Likewise, a magnification or minification of the scene seen through these
cameras could cause misperception of depth [246]. The latter problems might also exist for graphi-
cally displayed objects in an optical see-through display but would not affect the real world objects seen
through this type of display.
Additionally, we found a statistically significant effect of shadow presence or absence on distance

judgments, confirming (H2). However, the improvement in distance perception was small, about 2%.
This improvement is smaller than prior work in the real world and what our knowledge of graphics
would predict [9, 102, 135, 175, 198, 492]. This finding is important regardless of the size of the effect
because, insofar as we are aware, we are the first to use an absolute measure of distance perception in
judging the effect of shadows on distance perception in AR (perceptual matching was used in prior
work [102, 135, 175]). It is important to confirm effects through a variety of means and measures, and
this result thus represents that. However, the small magnitude of the effect is surprising and a topic we
return to below.
Finally, we did not find an interaction of height and shadow as we hypothesized (H3). The interac-

tion of height and shadow is an effect we hypothesized based on prior work by Salas-Rosales et al. [397]
in AR, and this interaction is one predicted by Gibson’s ground theory [144]. We did find an effect of
height on depth judgments, which is consistent with prior work both in the real world and AR [100,
255, 346], but the failure of rendered shadows to pin the location of objects down, i.e., the lack of
a significant interaction, must be seen as a limitation of our experiment. This limitation should be
noted since prior work has demonstrated that what people regard as a shadow in the real world is flexi-
ble [296, 333].
We conjecture two possible reasons for this lack of an interaction. As mentioned previously, the

overall effect of shadow on distance underestimation was smaller than we expected a priori, particularly
based on prior work [397]. It is possible that we did not have enough experimental power to detect an
interaction given this. It may be that both these of these results are an outcome of using verbal reports.
Verbal report measures are often more variable than other distance measures [13, 247, 508] and they
can be susceptible to anchoring effects [353, 464, 465]. Thus, participants may not make verbal distinc-
tions beyond the nearest 0.25 m (for example) or may repeat common responses. Secondly, the choice
of a sphere may have made it harder for participants to judge the effect of shadows and ground contact
than other shapes that are more commonly used in distance estimation studies in VR and AR, such as
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a cube [397], traffic cone [224], or hockey puck [64]. Although the use of a sphere with shadows in
distance estimation studies has significant antecedents [514], we have prior work that shows prediction
of surface contact is harder for a sphere than other shapes (like a cube), and this may have also affected
results [Anonymize citation]. Future work should explore these questions more thoroughly.
Another potential limitation of the current work is that we do not directly compare people’s dis-

tance reports between real and augmented reality targets in the current study. As reported in Feldstein
et al. [121], people’s distance judgments in real spaces are typically accurate (M=92%), but the variance
across these reports is considerable. One way to obtain more accurate comparisons of distance judg-
ments between real and augmented reality targets is to evaluate people’s judgments in both.
Although our current study provides a foundation for future investigations to evaluate how techni-

cal trade-offs between optical see-through and video see-through displays influence depth perception,
it is impossible to infer what specific differences in these displays cause dissimilar degrees of underes-
timation with the current study alone. Part of the reason for this is that there are a large number of
hardware and software differences between the two devices. Additional research is required to isolate
influencing factors.

7.2 Study 6 - Distance Perceptionwith Stylized Shadows

Early research in augmented reality suggested that virtual objected rendered by AR displays needed to
match the appearance of their real world environment for accurate spatial perception [107]. For exam-
ple, the shading of a virtual object should be visually realistic such that virtual lighting models should
imitate lighting information found in the natural world. However, in recent years, augmented reality
researchers have begun to argue against this theory [2, 5, 81, 441, 479]. This shift in thought devel-
oped in tandem with a rise in commercial AR applications—many of which rely on non-photorealistic
(NPR) graphics to create engaging interactions between real and virtual spaces.
Niantic’s Pokémon Go is an augmented reality game in which players encounter fantastical creatures

in real world spaces. Google Maps AR presents viewers with floating arrows and informative icons
showcasing local businesses to guide users to their destinations by using geospatial information. Even
face overlays from popular platforms like Meta’s Instagram and ByteDance’s TikTok often rely on styl-
ized overlays to exaggerate or create impossible 3D fixtures in people’s physical space. A partial explana-
tion for the ubiquity of stylized graphics in AR applications is that rendering photorealistic graphics is
computationally expensive, and most current AR applications are deployed on mobile devices, which
have a limited computational budget. However, it is uncertain how stylized graphics affect our visual
perception of space when they are superimposed into reality.
In this dissertation, we begin to investigate this question by looking at a single graphical element:

cast shadow. In our initial research studies, we provided evidence that a non-photorealistic rendering
approach for cast shadows (in this case a white shadow) enhanced surface contact perception inMR.
We then evaluated egocentric distance perception in two augmented reality devices to targets with and
without cast shadows to understand how the absence of cast shadows and the presence of realistic cast
shadows affected people’s ability to accurately perceive depth in AR.
In our second distance perception study, we again use verbal report to obtain absolute measures of

people’s distance perception judgments in the Microsoft HoloLens 2 and the Varjo XR-3. We present
targets at various distances within action space, and targets are positioned on and above the ground.
However, in this second experiment we compare how distance judgements to objects rendered with
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Figure 7.5: In Study 6, participants viewed target spheres that were positioned on and above the ground. These
targets were either rendered with a cast shadow or with a glowing ring on the ground beneath them. The gray
ground surface is provided here for illustration purposes; the actual ground was shown in the AR devices

a non-photorealistic surface contact cue compare to distance judgements to objects rendered with
visually realistic cast shadowsWith this comparison, we seek to understand how the use of a non-
photorealistic surface contact cue influence people’s egocentric depth perception.
We predicted that depth judgements between the non-photorealistic surface contact cue and the

realistic cast shadow would be similar. Furthermore, unlike our previous experiment, we anticipated
that on and above ground judgements would be similar in the current study. By design, the effect of
height observed in our prior study was largely driven by the no shadow condition, in which the posi-
tion of objects in space was ambiguous due to a lack of surface contact information. Because both the
on and above ground targets in the current study are presented with surface contact cues and because
we anticipate similar performance between the two surface contact cue conditions, we predicted that
judgements to objects of different height would be comparable in our second experiment. Because we
evaluated the same two ARHMDs in our current study, we anticipated that distance judgements in
both devices would be underestimated and that distances would be further underestimated in the video
see-through condition.
In review, our hypotheses include:
H1: Distances will be underestimated, but there will be less underestimation (greater accuracy) with

the HoloLens 2 compared to the Varjo XR-3.
H2: Distance estimations will increase as actual target distance increases.
H3: (a) Distance estimations will not differ between realistic versus stylized shadows, but (b) shadow

type will have a greater influence in the OST vs VST device (shadow times device interaction).
H4: Distance estimations will not change with target height.

7.2.1 Participants
A different set of twenty-four students from Vanderbilt University participated in exchange for 10
USD and 45 minutes of their time. The average age was 27 years (Min: 21, Max: 59). Fifteen volun-
teers were female and nine were male. All participants experienced both the optical see-through AR
display and video see-through AR display for a within-subjects experimental design. Our experimental
methods were approved by the local institutional review board, and written consent was obtained from
all volunteers prior to participation. All participants had normal or corrected to normal vision.
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Figure 7.6: A participant views the experiment in the OST AR condition (left) and the VST AR condition (right).
For each device, the experiment was conducted on opposite sides of the classroom.

7.2.2 Design
The experimental design of our second experiment is nearly identical to the design used in our first dis-
tance estimation experiment. We again utilized a 2 (display) × 2 (shadow shading) × 2 (target height)
× 3 (target distance) within-subjects factorial design such that all conditions were presented to every
participant. Distance judgments were again obtained through verbal report. In the distance estimation
experiment, the shadow shading conditions referred to either a realistic cast shadow or a stylized graph-
ical element along the ground. The four target height and ‘shadow’ shading conditions are shown in
Figure 7.5.
The realistic shadow was the same as the cast shadow from the previous distance estimation study.

The stylized graphical element, however, was rendered as a glowing white ring underneath the target
object. This stands in contrast to the solid white shadow employed in our surface contact perception
research (Section 4). We selected a glowing ring to replace the regular cast shadow, because this kind
of graphical element is commonly used in AR applications as well as video games to indicate the posi-
tion of objects of interest. The glowing ring also provides a more useful analogue to common interface
elements used in AR actual applications.
The materials and procedure for our second experiment were the same as our first distance estima-

tion study (See Section 6.2).

7.2.3 Statistical Analysis
Data were analyzed with mixed models, which are appropriate for the nested structure of the data in
this experiment. Mixed models allow for the partitioning of variance both within and between par-
ticipants. All analyses were performed in R [379]. Mixed models were run using the lmer function
from the lme4 package [40], and the intraclass correlations (ICC) were calculated with the performance
package [288].
Due to some of our hypotheses aligning with a null effect, we conducted our analyses in both a

frequentist and Bayesian framework. Bayesian models were run using the rstan, and brms packages
[66, 437]. For the Bayesian analyses, we report betas, credible intervals, and Bayes factors. Bayes fac-
tors were computed using bridge sampling and thus the reported values are approximations as a di-
rect calculation is not possible within the context of multi-level Bayesian models. A credible interval
is a probability statement that the true parameter would lie within an interval a certain percent (e.g.,
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Table 7.3: Summary of outputs from our Frequentist and Bayesian statistical analyses

Frequentist Bayesian

Predictors Estimates Confidence (CI) Estimates Credible (CI)

(Intercept) 2.24 *** [1.56 2.91] 2.24 [1.53 2.96]
Device - .44 *** [-.64 -.24] - .44 [-.64 -.23]
Shadow - .01 [-.18 .16] -.01 [-.18 .17]
Height .01 [-.13 .15] .01 [-.13 .15]

Distance (4.5m) .58 *** [ .46 .70] .58 [ .46 .70]
Distance (6m) 1.14 *** [1.01 1.26] 1.13 [1.01 1.26]
Order .75 * [-.07 1.57] .76 [-.07 1.57]
Room .44 [-.33 1.21] .44 [-.39 1.24]

Shadow×Device .05 [-.15 .25] .05 [-.15 .25]
Shadow×Height - .05 [-.25 .15] - .05 [-.25 .15]
Device×Room .10 [-.10 .31] .10 [-.09 .30]
Device×Order .24 ** [ .03 .44] .24 [ .04 .44]

∗ p <.05 ∗∗ p <.01 ∗∗∗ p <.001

90%, 95%, 99%) of the time, given the observed data. For example, a 95% credible interval provides a
probability statement that given the observed data, the true parameter would fall within the given in-
terval 95% of the time. Bayes factors are mathematically defined by dividing the likelihood of the data
under one model/hypothesis by the likelihood of the data under another model/hypothesis, such that a
Bayes factor of exactly 1 suggests the data are equally likely under either model/hypothesis.

7.2.4 Results
Results from both frameworks are presented in Table 7.3. During posthoc assumption checking, we
found that there was some slight heteroscedasticity when plotting residuals vs. fitted values. Thus, we
re-ran the analysis using robust standard errors (using the robustlmm package in R) [236], while there
were some slight changes in standard errors and p-values most changes were in the second or third dec-
imal places and there were no changes in the direction or significance of effects that would change our
interpretation. For brevity, only the original analyses are reported.
One note for interpretation, we used a null/uninformative prior in our Bayesian analysis, thus the

Bayes factors presented should be interpreted with caution because Bayes factors are highly sensitive to
prior specification [8, 138, 158, 277]. Different priors could lead to a dramatic shift in the Bayes fac-
tor (see Liu and Aitkin [277], for an example). Accordingly, our interpretation in the Bayesian analysis
leans more on the information provided by the credible interval, as the posterior distribution summa-
rized by the credible interval is notably more stable and less sensitive to the prior, especially as sample
size increases.
The primary dependent variable was distance estimates (converted to meters). The intraclass corre-

lation (ICC) for distance estimates was .44, indicating that 44% of the variance in distance estimates
was between participants and 56%was within participants. Regardless of condition, on average par-
ticipants in this experiment underestimated distance by ∼27%. All variables were dummy coded in our
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Figure 7.7: Judgments for the HoloLens 2 and Varjo
XR‐3 at each target distance fit with linear regression,
featuring swarm plots of raw datapoints. The dotted line
represents veridical performance.

Figure 7.8: Estimated marginal means (EMMs) for
Device & Shadow condition contrasts with raw EMM
values plotted

analyses, which means the intercept represents the average distance estimate when all other variables
are set to 0 (i.e., Device=HoloLens, Shadow=realistic shadow, Height=on ground, Distance=3m, Or-
der=HoloLens first, Room=HoloLens on left side of room) and thus all betas (B) are relative to this
intercept value.

H1: Effect of device

On average, participants underestimated distances by ∼24% in the HoloLens 2 and ∼29% in the Varjo XR-
3. Hypothesis 1 was supported (via the frequentist analysis) in that distance estimates in the Varjo XR-
3 were shorter (B = 0.44, SE = .10, p < .001), compared to distance estimates in the HoloLens 2
(See Figure 7.7). This means that across participants, distance estimates in the Varjo XR-3 were 44cm
shorter. The Bayesian analysis further confirmed Hypothesis 1 with an identical beta/slope value of
−.44 and a 95% credible interval that ranged from .64 to .23. While credible intervals are not designed
for hypothesis testing [45], they do provide intuitive and interpretable estimates of uncertainty. Thus
a 95% credible interval ranging from .64 to .23 suggests that the range of plausible values for the effect
of device span from 23cm to 64cm of underestimation in the Varjo XR-3 compared to the HoloLens
2. The Bayes factor when comparing the full model to a model with device and all device interaction
terms removed was> 100 (2, 526.26), suggesting the data is more than 100 times more likely under the
alternative hypothesis than the null hypothesis. However, the effect of device is qualified by a signifi-
cant device x order interaction (B = .24, SE = .10, p = .02). This suggests there was a larger effect of
device (B = .44) when participants ran through the experiment in the HoloLens 2 first and the Varjo
XR-3 second and smaller effect of device (B = .20) when participants ran through the experiment in
the Varjo XR-3 first and the HoloLens 2 second.
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H2: Effect of distance

Hypothesis 2 was supported by both the frequentist and Bayesian analyses. In the frequentist analysis,
both the 4.5 (B = 0.58, SE = 0.06, p < 0.001) and 6 meter (B = 1.14, SE = 0.06, p < .001) distances
were estimated as farther than the 3m distance, as seen in Figure 7.7. This means that on average, at 3m
(represented by the intercept in our models) participants estimated the sphere to be 2.24m away. At
4.5m estimates increased by .58m, meaning that on average at 4.5m participants estimated the sphere to
be 2.82m away. While at 6m estimates increased by 1.14m relative to the intercept (3m), meaning that
on average at 6m, participants estimated the sphere to be 3.37m away. The Bayesian analysis further
confirmed Hypothesis 2 with identical beta/slope values of .58 and 1.14 and 95% credible intervals that
ranged from .46 to .70 and 1.01 to 1.26. The range of plausible values range from 46cm to 70cm and
101cm to 126cm—meaning there is almost certainly a positive relationship between target distance and
estimated distance. The Bayes factor for effect of device was> 100 (1.27 × 1029), suggesting the data is
more than 100 times more likely under the alternative hypothesis than the null hypothesis.

H3: Effect of shadows across devices

Hypothesis 3 was partially supported by our frequentist and Bayesian analyses. In the frequentist anal-
ysis, our prediction was that there was no effect of shadow (H3.a) (B = .01, SE = .09, p = .92), but
our prediction failed since the shadow x device interaction term was non-significant (B = .05, SE =
.10, p = .52) (H3.b). The Bayesian analysis resulted in an identical beta/slope value of .01 and .05 and
95% credible intervals that ranged from 0.18 to 0.16 and .15 to .25, respectively. Given 0 is near the cen-
ter of both 95% credible intervals above, we interpret an effect of 0 as plausible for the effect of shadow
and the shadow x device interaction. The estimated marginal means for this interaction are visualized in
Figure 7.8.
The Bayes factor when comparing the full model to a model shadow and all shadow interaction

terms removed was ∼0.01, suggesting the data is approximately 99 times more likely under the null hy-
pothesis than the alternative hypothesis. The Bayes factor for the shadow x device interaction effect was
∼0.13, suggesting the data is approximately 8 times more likely under the null hypothesis compared to
the alternative hypothesis.
The “∼” indicates the potential slight variability of this estimate, given that bridge sampling was used

to calculate Bayes factor. A direct calculation is not possible within the context of multi-level models.

H4: Effect of height

Hypothesis 4 was supported by both the frequentist and Bayesian analyses. In the frequentist analysis,
there was not a significant effect of height (B = .01, SE = .03, p = .88). The Bayesian analysis resulted
in an identical beta/slope value of .01 and a 95% credible interval that ranged from .13 to .15. Given 0 is
near the center of the 95% credible interval and the interval is fairly symmetrical, we interpret an effect
of 0 as highly plausible.
Even if the effect is non-zero, it is likely small, as the tails of the 95% credible interval lie around±.15.

Even at the extremes of plausible values (.13, .15) this would translate to spheres positioned .2meters off
the ground being either under or overestimated by 13 − 15cm, with an effect close to 0(.01) being most
likely. The Bayes factor for the effect of height was ∼.02, suggesting the data is approximately 62 times
more likely under the null hypothesis compared to the alternative hypothesis.

98



7.2 Study 6 - Distance Perceptionwith Stylized Shadows

7.2.5 Discussion
The current experiment tested whether absolute egocentric distance judgments would be influenced by
the type of shadow and the type of AR device used. Previous work had suggested that there would be
overall underestimation of distance to AR targets, but how this underestimation is influenced by dif-
ferent shadow rendering techniques in mixed reality devices that use different methods for presenting
AR graphics (OST vs. VST) was unknown. In a completely within-subject design, observers verbally
reported perceived distance to spherical targets 3 − 6meters away, on or above the ground, with real-
istic and non-realistic shadows, using two different AR devices. Our results mostly supported our hy-
potheses. H1:We found underestimation of distance in both devices but less underestimation with the
HoloLens 2 (24%) than with the Varjo XR-3 (29%). H2:We found the expected effect of distance–as
target distance increased, verbal estimates increased. H3:We found no difference due to shadow type,
and this did not interact with the device type, suggesting that the stylized shadow was as effective as
the realistically rendered shadow. H4:We found that estimations did not change with location on or
above the ground, also providing support for the use of both shadows to specify location relative to
the ground plane. We discuss each of these effects (or lack of) further in the context of prior work and
potential implications.
Distances were underestimated, as expected, in AR, but participants were more accurate with the

HoloLens 2 (OST) compared to the Varjo XR-3 (VST) displays. This finding replicated of our pre-
vious experiment (Section 7.1 [4]), and is an important result given there are few other studies on
distance perception using the relatively new Varjo displays. There are several factors that could pos-
sibly contribute to the differences found between the devices in this work. One notable factor is the
camera-based systems used in VST displays. In the Varjo XR-3, misalignment of the cameras with
the eyes could distort depth in the scene [77, 174, 458, 507]. Another factor could be the different
FOVs; a smaller FOV is associated with greater distance underestimation in VR [64, 214, 303, 304]
and AR [133, 368]. Although the HoloLens 2 has a smaller FOV for the presentation of virtual ob-
jects, the viewer sees their full real-world FOV through the OST display, which is larger than the FOV
seen through the Varjo XR-3. The weight of the Varjo XR-3 is also greater than that of the HoloLens 2,
a factor shown to influence distance underestimation (see Kelly [223] for a recent review).
We found no effect of shadow type on distance estimations, across the two devices. Unlike in our

previous distance estimation experiment, we included shadows on all trials, but varied whether they
appeared realistic or stylized as shown in Figure 7.5. We predicted that the stylized shadow would serve
to provide information for ground contact equally well as the realistic shadow, supporting the find-
ings of our surface contact perception research (Section III) [2, 5]. We also considered the possibility
that the shadows would have different effects given the two different display types (i.e., particularly
the OSTmight benefit more from a lighter colored shadow), but we found no evidence for an over-
all difference or an interaction with device. Why might the stylized, non-realistic shadow be so effec-
tive? As suggested by our previous work, it could be that the bright ring provided such a salient cue for
ground contact that its benefit outweighed any costs of appearing unnatural. The ring used in the cur-
rent study differs from the solid white shadow used in our previous experiments yet it still had similar
effects. Future work should examine whether other creative forms of nonrealistic shadows [209, 221]
would also match performance of realistic shadows in distance perception tasks.
Consistent with Gibson’s ground theory![144], prior work has shown that AR objects are perceived

as farther away when they are located off the ground, given no additional information for ground con-
tact [4, 397]. However, when shadows are provided as a ground contact cue, we would expect this
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effect to be reduced. Thus, our current finding that there was no effect of height above the ground
on perceived distance with both types of shadows provides further support that the stylized shadow
serves as an effective cue for location, similar to the realistic shadow. We tested only one relatively small
(20cm) vertical displacement above the ground. Future work could assess the utility of different types
of shadows at different heights and distances to further generalize these effects.
This study used verbal reports as the response measure for distance. Distance underestimation is

consistently seen in the real world when using verbal reports [283]. Because we did not run a matched
real world condition, we cannot make strong claims about whether the current AR results show greater
or comparable amounts of underestimation to the real world. However, it is notable that the magni-
tude of distance underestimation increased with increasing distance in our data (∼20% at 3m, ∼37% at
4.5m, and ∼44% at 6m), a result that is not typically seen in the real world at this range of distances [283,
370]. Studies that have directly compared AR and real world estimates showmixed results, which is
likely due to multiple factors including the type of measure and the type of AR display. Action mea-
sures, such as blind walking [281, 392] are typically accurate in the real world and some studies have
shown comparable distance estimation with real and AR targets (e.g., Stefanucci et al. [438]). There
has been significant work in virtual reality studying distance estimation and response measures as well
(see Creem-Regehr et al. [93] for a recent review), but less work has been done in AR (however, see
Jamiy et al.![109] for a video see-through virtual reality comparison). It would be interesting to com-
pare these AR devices in a study with action measures to see if it leads to an improved understanding of
the differences between OST and VST devices.

7.3 Summary

In Aim 2 the dissertation, we examined the impact of augmented reality display on depth perception
with two major goals in mind. First, we wanted to compare depth perception in optical see-through
(OST) and video see-through (VST) displays to better understand their perceptual limitations and the
trade-offs between them. Second, we wanted to investigate the influence of realistic and unrealistic
graphics on people’s depth perception, especially as applied to cast shadows and other visual cues that
connect virtual objects to real surfaces in space.
We conducted two experiments in which verbal reports were employed to evaluate absolute distance

perception in two commercially available HMDs: the Microsoft HoloLens 2 (an OST ARHMD) and
the Varjo XR-3 (a VST ARHMD). Consistent with prior research, people exhibited significant dis-
tance compression in both devices, although people experienced less severe distance compression in the
HoloLens 2. Our studies were the first to evaluate absolute measures of distance perception in either
the HoloLens 2 or the Varjo XR-3. They are also some of the few research studies that have compared
depth perception between OST AR and VST ARHMDs.
Our research furthers our understanding of the influence of virtual object height on distance percep-

tion judgments in AR, it extends our prior research on the influence of cast shadow on spatial percep-
tion by connecting surface contact perception research to distance perception research, and it provides
evidence that stylized graphics do not detract from accurate spatial perception in AR.
Beyond the limitations discussed previously, future research should consider generalizing the find-

ings across various AR displays and employing diverse methods (e.g., blind walking, perceptual match-
ing) to evaluate depth perception. Additionally, given the influence of height in the visual field found
in the current work, it may be beneficial to conduct a more in-depth investigation of the influence of
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target height on depth perception in AR. Finally, it may also be interesting to look at how the unique
rendering properties of the two displays influence depth perception, given that OST and VST AR de-
vices integrate virtual and real environment information in unique ways.

Acknowledgment I would like to thankMirindaWhitaker for taking the time to discuss Bayesian
statistics with me and for her tremendous help with the statistical analysis for this experiment.
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Vision Simulation & Eye Tracking



What we cannot imagine cannot come into being
bell hooks

8 Vision Simulation

In the final aim of this dissertation (Aim 3), we extend our investigation into spatial perception by eval-
uating distance judgements made by people with simulated vision loss in MR. People with impaired
vision report difficulties performing a range of daily tasks that require an accurate encoding of 3D
space [382, 404]. For example, people who experience severe vision loss to their peripheral or central
vision express difficulties performing tasks like driving, navigating stairs, and avoiding obstacles while
walking [116, 181]. In traditional two-dimensional (2D) media, it has been demonstrated that people
with vision loss benefit from nonrealistic image enhancements like edge and contrast enhancement,
since these methods improve the visibility of items on a screen [70]. However, it is unknown if stylized
graphics and image effects will aid or impede people with visual impairments as they navigate complex
3D environments [403]. Vision enhancements that interfere with a patient’s residual vision or inter-
fere with their ability to accurately perceive the distance to objects in space may exacerbate preexisting
mobility difficulties.
To facilitate our study on the influence of visual field loss on spatial perception and accessibility, we

create an immersive low vision simulation. This simulation provides control over the extent of visual
field loss experienced by the user. The control provided by our simulation is useful for better under-
standing the influence of specific vision loss symptoms, in our case visual field loss, on people’s percep-
tion and behavior. As such, we use this simulation to study the influence of visual field loss on spatial
perception in general and to better understand the influence of realistic versus stylized graphics on spa-
tial perception judgements.
In this chapter, we describe our vision impairment simulation. Our implementation pays special

attention to the reproduction of symptoms associated with visual field loss and reduced visual acu-
ity. Both symptoms are inversely correlated with vision-related quality of life in patients with low vi-
sion [23, 181, 350, 378]. Further, central vision loss and peripheral vision loss have important, differen-
tial consequences for spatial perception [231, 356, 431, 482]. To create more accurate visualizations, we
also draw inspiration from the most common descriptors used by low vision patients to describe their
experience with vision loss [87, 124, 194, 462]. Before introducing our vision simulation, we briefly
describe the characteristics of low vision and vision impairment in Section 3.1. In Section 8.2, we then
explain the image processing pipeline used for our simulation. We also provide context for each feature
of the pipeline by discussing how our implementation differs from that found in prior vision simula-
tion work. Finally, we discuss at a higher level how our simulation compares with previous work, some
limitations of our current approach, and how future iterations of our systemmay include other symp-
toms of vision impairment.
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8.1 Motivation & Goals

Low vision is not the same as having poor visual acuity—- nor is it the same as having a complete lack of
light perception (total blindness). The functional definition of low vision defines low vision as a visual
impairment that cannot be corrected by medical treatment or conventional eyeglasses [328]. Typically,
individuals with low vision experience partial vision loss within their visual field. As vision impairments
become more severe over time, these localized areas of vision loss, or scotomas, can result in a complete
loss in light sensitivity and reduced visual acuity can be experienced in larger areas of the visual field.
Common eye diseases associated with low vision include: glaucoma, age-related macular degeneration,
and diabetic retinopathy. The symptoms that individuals experience in low vision are highly heteroge-
neous, since the area and the extent of the visual field affected can vary. Multiple areas of the visual field
can also be affected.
This heterogeneity makes classifying and studying how low vision affects visual function, visual per-

ception, and behavior challenging. As a result, traditional classification schemas for estimating visual
function in people with low vision can be vague or inaccurate. For example, population-based surveys
often exclusively rely on visual acuity to categorize the severity of vision impairments [201]. However,
ophthalmologists often discourage the use of visual acuity tests alone to assess visual function in people
with low vision [84, 207, 262] as visual acuity has poor diagnostic accuracy for low vision [80, 201].
Since the 10th revision of the International Classifications of Diseases (ICD), an internationally used di-
agnostic tool for categorizing disease, the importance of considering other characteristics of vision loss
has been formally codified [97, 201, 357]. The ICD-10 puts a particularly strong emphasis on visual
field extent. For example, they classify low vision as having a visual acuity of less than 6/18 but equal
to or better than 3/60 or a corresponding visual field loss to less than 20 degrees in a person’s better eye
(ICD-10: H54.9) [201].
How to best render visual field loss and scotomas for simulation is an active area of research [364].

Even though immersive low vision simulations exist, most are based on simplified symptoms of eye
diseases [512] and are unable to produce the irregular scotomas that individuals experience in reality.

8.2 Our Vision Simulation

In this section we describe the image processing pipeline for our proposed gaze contingent simulation
of visual field loss. For each eye, the algorithm takes the monocular, digital image produced by a display
and a 2Dmatrix that contains visual field loss information (the visual field map) as inputs. It then per-
forms the following operations: (1) it matches the visual field map (VFM) to the screen resolution and
field of view (FoV) of the display, (2) it positions the VFM texture relative to the center position of a
person’s gaze, and (3) it performs image processing operations to simulate the symptoms of visual field
loss at pixels on the display’s screen where vision loss is indicated by the VFM. For rendering symptoms
of vision loss, we design two methods that may be used together or in isolation to simulate different
eye disease symptoms: (3a) rendering vision loss with opacity and (3b) rendering vision loss with blur.
Figure 8.1 displays a schematic of our image processing pipeline for clarity.
The visual field map input is a 2Dmatrix that indicates where vision loss is present as well as the

severity of vision loss at specific areas within the visual field. Our simulation is designed to be data ag-
nostic. As such, it can accept arbitrary 2Dmatrices (e.g., 2D images) as VFM inputs. However—in the
interest of creating realistic reproductions of visual field loss—in the current work we also introduce a
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data-driven solution for generating VFMs from clinical perimetry data (Section 8.2.1). The patient data
we use to generate VFMs is from a specific perimetry test: the Humphrey Visual Field test. Integrating
VFMs that are generated from different perimetry tests in future research is a straightforward task since
the simulation itself accepts arbitrary VFMs as inputs.
We provide an explicit port of our simulation for the HTCVive Pro Eye. We planned to include a

port for the Varjo XR-3, as well. Unfortunately, complex post-processing operations, like those em-
ployed in our simulation, are prohibited by the Varjo SDK*.

Figure 8.1: Schematic of the vision simulation pipeline

8.2.1 Visual field map
Our simulation uses visual field maps to determine where and how image processing techniques that
simulate vision loss should be applied within the field of view of a head-mounted display. These visual
field maps are 2Dmatrices in which each value corresponds to linear scaled retinal sensitivity values in
the range [0,1]. Within these maps, black (0) indicates a complete loss of retinal sensitivity. This ap-
proach allows our simulation to accept arbitrary visual field maps as inputs, since any 2Dmatrix may be
used to map where vision loss occurs. For example, VFMs can be generated as single channel grayscale
textures in which each pixel corresponds to a retinal sensitivity value. Our simulation permits different
VFMs to be used as inputs for the left and right eyes.
The ability to accept arbitrary visual field maps as inputs and the ability to specify different maps

for each eye are desirable in vision simulations for a number of reasons. The appearance of scotomas is
highly heterogeneous, such that the shape, the size, and the number of scotomas vary across individuals—
even when they have similar medical diagnoses [86, 196, 462]. An individual may also have different
severities of vision loss between their two eyes [16, 61]. As such, being able to capture these characteris-
tics is important to ensure more realistic visualizations of vision loss.
Even more realistic representations of diseased visual fields can be created by using patient data cap-

tured through visual field tests (perimetry tests) as inputs. By using patient data, we may better replicate
the extent of a particular individual’s vision loss as well as the shapes and sizes of any scotomas in their
vision. Because our simulation is data agnostic—it can process data across a wide range of different
visual field test data formats. However, one should always consider how data is collected for a given
perimetry test before naively interpolating values to generate a visual field map. In the following sub-
sections, we describe a principled approach for converting patient data into visual field maps for our
system.

*Varjo Technologies Oy (2024). https://developer.varjo.com/docs/get-started/Post-processing
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Figure 8.2: Visual field examination results using the Humphrey field analyzer (HFA) [72] 24‐2 SITA‐Fast protocol
for a patient with glaucoma. The patient has visual loss indicative of advanced glaucoma in their left eye (left) and
nonspecific changes in their right eye (right) [393]

Visual field data

In clinical settings, perimetry tests are useful for diagnosing a range of medical conditions (e.g., reti-
nal diseases, neurological diseases, glaucoma). These assessments detect vision loss within the visual
field, and they provide a map of where scotomas occur. In the context of vision simulation, the re-
sulting matrices of perimetry data can be useful for determining where and how image processing ef-
fects should be applied within a display to mimic patient symptoms, since perimetry data captures
both where vision loss occurs as well as the severity of vision loss at a given location within the visual
field [302, 367, 445].
A number of different types of perimetry tests are used in medical practice, including Humphrey

Field Analyzer (HFA), Goldmann, and Octopus perimetry. All perimetry tests produce coordinates of
data in which each datapoint corresponds to a person’s sensitivity to visible light (or retinal sensitivity)
at a specific region within their visual field—although the way datapoints are measured, the number of
data points, and the extent of the visual field tested vary. For example, automated static HFA perimetry
produces data as a discrete grid of logarithmic sensitivities and manual kinetic Goldmann perimetry
produces data as a circular isopter on a polar coordinate grid [391]. Accordingly, how patient visual
field data should be processed to generate visual field maps is dependent on the specific perimetry used
to measure vision loss. To illustrate how patient perimetry data can be converted into a visual field map
in practice, we look at a specific example: Humphrey field analyzer.

Generate a visual field map fromHumphrey Field Analyzer

Humphrey Field Analyzer data is useful for generating data-driven visual field maps in vision simula-
tions on account of its common use in clinical practice. Further, Montesano et al. [320] have published
an invaluable dataset of visual field data collected from 3,895 individuals using the HFA 24-2 protocol
that we may exploit to visualize a range of different visual field symptoms. The HFA is conducted by
presenting lights with different levels of brightness to a patient while they fixate their eyes at a target at
the center of a display. The patient is asked to respond each time they detect the presence of a light in
their visual field. The test is conducted for each eye, individually. The HFA allows for different testing
protocols, in which the number of points tested and the extent of the field of view measured vary [338].
An example of the data produced by the 24-2 protocol, which measures 54 points that are measured 24
degrees temporally and 30 degrees nasally, is shown in Figure 8.2.
Retinal sensitivity is measured in reference to luminance intensity. The HFA, like most perimetry

tests, does not shine light directly into a patient’s eyes, but rather projects light onto a reflecting surface.
The light that reaches the patient’s eyes is thus measured by candela per square meter (cd/m2), which
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is the luminous intensity over a projected surface area [410]. In perimetry tests, luminance intensity is
also often reported in apostilb (asb), where 1 asb = 0.3183 (cd/m2).
There is an inverse relationship between the luminance of the stimuli in the test and a patient’s light

sensitivity—such that high sensitivity is shown by responses to lights with low brightness and low sensi-
tivity is shown by responses to lights with high brightness.
Retinal sensitivity is reported as the negative log of the threshold luminance, and it is given the ar-

bitrary units decibels (db) [39] (Appendix, p.319-323). A retinal sensitivity change of +1 db equals a
threshold change of –0.1 log (asb). Logarithmic scaling follows fromWeber’s law, which states that
perceived brightness is proportional to the logarithm of the actual intensity measured [119, 472]. Light
sensitivity values near 30 dB indicate normal light sensitivity and values near 0 dB indicate little to no
light sensitivity [59, 79, 218, 505]. Individual points with a value of 40 dB or greater are considered hy-
persensitive results caused by patient overreaction or guessing during the exam [73, 172]. Because our
VFM is designed to simulated impaired vision, we clip all values greater than 30 dB, since areas of nor-
mal vision should not be rendered with vision loss symptoms.
To ensure that our visual field map can be utilized with a wide range of image processing operations,

we normalize sensitivity values and convert them to a linear scale in the range [0,1]. Converting reti-
nal sensitivity values to a linear scale is important for ensuring that image processing methods function
correctly since most of these operations (e.g., resizing, filtering) assume linear inputs. Performing linear
operations on nonlinear inputs can introduce undesirable image artifacts [155]. For example, lighting
and resizing operations performed in nonlinear space (e.g., gamma-corrected sRGB images) can cause
shadows and dark color values to become abnormally dark. Converted values as stored as floating point
numbers instead of 8-bit numbers, which are common in RGB images and other types of texture maps,
to ensure that a wide range of retinal sensitivity values are represented. The human eye is capable of
adapting to a dynamic range of luminance intensities beyond the range provided by 8 bit quantiza-
tion [122].

8.2.2 Match to HMD screen and FOV
To ensure that visual field maps are rendered correctly within the HMD, they are upsampled to match
the per eye resolution and monocular field of view of the HMD. Specifically, our solution uses the
per eye (monocular) resolution and the FoV of the display as inputs to ensure that visual field loss is
rendered correctly. As such, our vision simulation may be applied to any eye-tracked head-mounted
display, where the resolution and FoV of the display are measurable.
By default, our simulation assumes that the VFM corresponds to the full monocular FoV of the

HMD. This behavior can be overridden by specifying a smaller horizontal and vertical FoV for the
VFM.When FoV information is provided, the simulation upsamples the VFM to match the pixel
count of the display that corresponds only to that portion of the display’s FoV.
This functionality is especially important for VFMs that are generated from patient data, because

the visual field extent tested in perimetry protocols is often smaller than the extent viewable in con-
temporary VRHMDs. For example, the HFA 24-2 protocol captures 54◦ visual field horizontally, but
contemporary VRHMDs provide approximately 100◦ horizontally. In the current version of the sim-
ulation, upsampling is performed using hardware accelerated bilinear interpolation [484]. However,
the final version of the simulation will employ Gaussian upsampling to better mimic the human visual
system [139, 515]. When the field of view of the VFM is smaller than the field of view of the display,
the last pixel at the border of the visual field map is extended outward to complete the periphery us-
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ing bilinear interpolation. This approach allows for flexible simulation of both central and peripheral
scotomas.
For the current work, we estimate field of view for an HMD using the field of view that is rendered

to its display panel. These values are obtained using the OpenVRAPI [474] and the HMDQ com-
mand line tool [324]. We use this approach, which queries FoV data from the headset driver rather
than the manufacturer’s estimates, since manufacturers often do not report the FoV data we require
for this simulation (e.g., monocular, horizontal FoV) and since manufacturers typically do not report
how FoV is measured in their assessments. Leveraging the OpenVRAPI also ensures that our FoV cal-
culations and any resulting adjustments to visual field maps for our simulation are reproducible across
HMDs of the same make and model.

8.2.3 Gaze contingent rendering
Gaze contingent rendering is achieved in our simulation by positioning the visual field map texture rel-
ative to the center of a person’s gaze. All image processing methods for simulating symptoms of vision
loss use the position shifted visual field map as an input. Eye tracking integration is imperative for the
simulation of low vision, since vision impairments for these conditions often affect specific areas of a
person’s visual field. For example, vision loss from glaucoma is most prominent in peripheral vision and
vision loss from age-related macular degeneration (AMD) is most prominent in central vision. To sim-
ulate these vision conditions correctly, a virtual scotoma must be rendered relative to where a person is
looking—–not as a static image on a display.

8.2.4 Rendering vision loss symptoms
A variety of image processing techniques may be employed with our visual field map to create different
vision loss symptoms. In the current work, we prioritize visual field loss simulation. And we build two
unique screen shaders that can be used to render vision loss symptoms. The first method renders vision
loss as an opacity, and the second method renders vision loss by applying image blur.
The two shaders work in concert with the visual field map so that additional image processing is per-

formed only when vision loss at a given pixel is indicated by the VFM. The vision loss shaders may be
employed individually or in combination—depending on the symptoms that one wishes to simulate.
The final image rendered by the display is the result of alpha blending operations at each pixel between
the original image and images produced by the low vision shaders. Blending weights for each pixel
are informed by the retinal sensitivity values stored within the VFM, where a value of 0 (which corre-
sponds to no vision impairment) indicates that only the unaltered image color value should be used for
rendering.

Rendering vision loss with opacity

Rendering vision loss with opacities is the most traditional method for simulating visual field loss
[30, 152, 481]. This approach is also what the National Eye Institute (NEI) and National Institute
of Health (NIH) used to generate their low vision example visualizations (Figure 8.3). Although most
low vision patients do not describe their vision loss symptoms as dark holes or tunnels in vision, there
are several vision conditions in which vision loss can be perceived as an opacity or dark shadow by the
patient, including: retinitis pigmentosa, retinal detachment, and certain forms of AMD [462, 503]. It
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Figure 8.3: Images provided by the National Eye Institute Media Library that are commonly used to demonstrate
symptoms of different eye diseases: (left) age‐related macular degeneration, (center) glaucoma, (right) diabetic
retinopathy [329].

is likely that simulating visual field loss with opacity is such a common approach—despite its lack of
realism for most low vision conditions—because visualizations created with this approach are easy to
interpret for the naive viewer and because they are easy to generate.
Accordingly, a number of researchers have implemented methods for rendering vision loss as opac-

ities for realtime vision simulation [21, 30, 243, 477, 496, 512]. Most methods involve similar post-
processing effects. For example, Velazquez et al. [481] simulated central vision loss using binary masks
to produce sharp onsets of vision loss, which is an approach that resembles the dense scotomas exhib-
ited in severe cases of age-related macular degeneration (AMD) [462]. Krösl et al. [243] developed a
method to simulate the dark shadows in vision described by some patients with cataracts [316] as well
as retinitis pigmentosa [503]. To achieve this effect, they linearly interpolate between a source image
and a dark mask with an alpha channel to create variable levels of opacity in the final image.
For our first vision loss shader, we present a solution similar to what has been developed in prior

research. For each image rendered in the display, we apply a post-processing effect that renders opac-
ities in a person’s vision, where vision loss is indicated by the visual field map. By default, opacities in
our simulation are rendered as black. At each pixel, linear interpolation is performed between the pixel
value of the original image and the color of the opacity. The weight of this interpolation is decided by
the visual field map. When the VFM indicates no vision loss, the color value of the original image pixel
is used. When complete vision loss has occurred, the pixel is completely replaced by the color of the
opacity. All other values within the VFM result in blending between the original image and the opacity
color.

Rendering vision loss with blur

Traditional visualizations that render scotomas as dark blind spots in vision, like the images used by
the NEI and NIH for AMD Figure 8.3 (left) and glaucoma Figure 8.3 (center) are not accurate for
most low vision patients. For patients with glaucoma, Crabb et al. [87] found that vision loss descrip-
tors were most often reported as blur and missing features (as opposed to black tunnel effects or black
patches). Fletcher et al. [124] reported similar findings in patients with AMD.When scotomas were de-
tected, they were registered as experiences in which items in the environment “disappeared”—rather
than as large opacities in vision. Similarly, a number of other low vision patient studies have found
that the most common descriptors for vision loss symptoms used by patients are “blur” and “missing”
(or “disappearing”) information [87, 124, 194, 462]. Disappearing effects often occur when there is
complete loss of vision (blind spots) within the visual field. This phenomenon can be explained by the
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Figure 8.4: Examples of simulated perceptual filling with extreme blur: (left) unaltered image of table with candle
visible, (right) a central scotoma completely obscures the candle.

perceptual “filling in” effects in the visual system [99, 237, 520]. Rather than ignoring the absence of
information when blind spots occur, the human visual system constructs a complete representation
of the affected area by blending proximal background information [237, 520]. Perceptual filling in
can even occur in the presence of artificial scotomas [381], although it is more robust in the presence
of real scotomas [520]. The underlying processes that permit active filling in are not yet well under-
stood [99, 237, 520].
For our second vision loss shader, we propose a method to simulate visual field loss using these two

most frequently described symptoms: blur and missing information. We render both blur and percep-
tual filling in effects with a single shader that introduces variable amounts of blur to an image. This ap-
proach is desirable since extreme instances of blur may be used to approximate the blending effects de-
scribed by the perceptual filling phenomenon [380, 520] and since filling in effects are often co-morbid
with visual acuity loss [134, 215]. Perceptual filling is approximated in our proposed shader by intro-
ducing extreme blur to regions of the visual field with complete vision loss. This blur is severe enough
to obscure all visual detail, such that only color and luminance information from nearby background
information remains (e.g., Figure 8.4).

Generating Blur Although different smoothing methods exist, the most commonly employed
for simulating reduced visual acuity through blur is the Gaussian filter. In 2006, Hogervorst & van
Damme. [182] noted a linear correlation between visual acuity and threshold for Gaussian blur filters.
Due in part to this finding, many of the vision simulations that followed have also employed differ-
ent implementations of Gaussian smoothing [21, 240, 241, 290]. However, as pointed out by Jones
et al. [215], the large kernel sizes required to simulate severe blurring, like that which is experienced by
people with moderate and severe low vision, can make traditional Gaussian convolution operations too
computationally expensive for real time rendering. This is problematic, since real time performance
and the maintenance of high frame rates is paramount to ensure that simulated vision impairments are
rendered at the correct positions within the field of view when eye tracking is employed.
A solution to this problem is to use multi-resolution image representations. These data structures

are often called image pyramids ormipmaps. Image pyramids are stacks of images with different res-
olutions, in which the highest resolution (original) image is at the bottom and the lowest resolution
image is at the top—a structure that resembles the shape of a pyramid. Image pyramids are constructed
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through two linear operations: filtering and sampling. For each level in the pyramid, the source image
is filtered and then downsampled to produce a smaller version of the image from the previous level. In
realtime vision simulations, this source image is the digital image captured by the display at each frame.
Image pyramids are computationally efficient and their development was initially motivated by in-

sights from human vision [68, 459], which is encouraging for applying this technique for vision simu-
lation. Tanimoto and Pavlidis’s seminal paper on the use of hierarchical data structures for image pro-
cessing was inspired by the visual encoding performed by the human retina [459]. The authors argued
that hierarchical data structures, as opposed to uniform arrays, better mimic the array structure of the
retina in which wide angle, low-resolution images (peripheral vision) and high-resolution foveal images
(central vision) operate together to create efficient visual representations of an environment.

Image Pyramids in LowVision Simulations The idea of employing an image pyramid to pro-
duce symptoms of vision loss was first proposed by Perry and Geisler in 2002 [137, 367]. Their method
uses a Laplacian pyramid with a Gaussian weighting function to simulate reduced visual acuity. Yet,
they do not take full advantage of the efficiency of the image pyramid data structure. In their solution,
after the pyramid is constructed, they again process each image in the pyramid by upsampling all im-
ages to match the resolution of the original source image. These expanded images are used in lieu of the
downsampled ones for blur computations. The authors then use a custom blending function to sample
between adjacent levels within the image stack as needed to determine the value of each pixel in the final
image [367].
Perry and Geisler’s simulation operated between 20-60 frames per second (FPS). The poor runtime

performance of their systemmay be explained by hardware and software limitations at the time of pub-
lication (2002) as well as by the additional operations they perform on the image stack after the pyra-
mid is generated. Their approach deviates from the more computationally efficient sampling methods
employed by standard and contemporary image pyramid algorithms [117, 263].
Recently, Jones et al. [215, 216] revisited the idea of employing multi-resolution pyramids to gener-

ate symptoms of low vision. The final version of their simulation was developed with the Unity game
engine (version 2017.4.1f1), and their blur method employed the image pyramid method provided by
the engine’s mipmap generation feature [216]. The filtering method employed by their simulation is
not explicitly stated in the published system description; however, they most likely employed a box fil-
ter, since this is the default filter employed to generate mipmaps in Unity 2017.4.1f1 *. They then used
bilinear sampling to sample between adjacent levels of the pyramid as required to produce image blur.
Jones et al.’s [215, 216] blur method forfeited the perceptual benefits of Gaussian smoothing in the
interest of computational efficiency. But these two features need not be mutually exclusive.

Our Gaussian PyramidMethod In the current work, we take advantage of the benefits of both
Gaussian blurring and image pyramid data structures by employing a Gaussian Pyramid to render vi-
sual field loss. We employ a Gaussian pyramid—as opposed to a Laplacian one [137, 367]—to better
capture the concomitant reduction of contrast sensitivity and visual acuity that often accompanies vi-
sion loss [194, 394, 471]. Our system is also explicitly coded to handle complete blind spots in vision.
These “disappearing” or perceptual “filling-in” effects that often occur with severe and complete visual
field loss [87, 124, 462] can be simulated by inducing blur to the such severity that visual information
from environmental features is completely lost.

*https://docs.unity3d.com/2017.4/Documentation/Manual/TextureTypes.html
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An image pyramid is generated for each new image rendered by the display. The Gaussian pyra-
mid consists of a stack of images where, at each level of the pyramid, the next image is smoothed with
a Gaussian kernel and downsampled by a factor of 2 [68, 137]. The image from the previous level of
the pyramid is used as input to generate the image at the next level. At the lowest resolution image of
the pyramid (the maximummipmap level), where the image resolution is mathematically zero, we in-
clude a base case in which the image is a 1 × 1 texel image. This value stored in this texel represents the
average color value of the entire image.
After the Gaussian Pyramid is constructed, our algorithm uses the values within the visual field map

to determine how the image pyramid is sampled to produce variable blur. When the VFM indicates no
vision loss, the original image is sampled. When complete vision loss has occurred, the maximum level
of the pyramid is sampled. The values stored within the VFM are continuous, but the image pyramid
contains discrete levels of resolution loss. To compensate for this, when the value of the VFM corre-
sponds to a level of vision loss that is between levels of the pyramid, trilinear interpolation is used to
sample between the two nearest levels. Because the images stored within the pyramid are of a lower
resolution than the output image, texture coordinates are also scaled to the dimensions of the selected
levels during this operation.
Both bilinear interpolation (e.g., Jones et al. [215, 216]) and trilinear interpolation are common

sampling methods for mipmaps [117]. We use trilinear interpolation in the current work, because
it permits weighted averaging between mipmap levels. Although bilinear interpolation is more effi-
cient [326], it can result in missed texels and abrupt switches between pyramid levels [117].
For image processing, Gaussian filters are controlled with two blur parameters: sigma and kernel size.

Sigma is the standard deviation of the Gaussian distribution. The kernel is a small matrix of numbers
that can be convolved with a source image to perform filtering operations. By default, our blur shader
uses a small, 3× 3Gaussian kernel for smoothing to ensure reasonable runtime performance.

8.3 Summary

Our simulation is not the first to employ visual field data to visualize impairments on 2D displays [88,
148, 367] or on stereoscopic displays [127, 215, 445]. However, to the best of our knowledge, our sys-
tem is the first to explicitly outline a principled approach for matching visual field data onto the field of
view of a head-mounted display (Section 8.2.2). How developers measure and use display FoV in their
calculations has ramifications for visual field mapping accuracy [292, 405]. As such, it is somewhat sur-
prising that this has been left unreported in prior vision simulation research.
Our simulation is also one of the first in HMDs to render complete blind spots, not as misleading

dark spots within the visual field, but as areas of missing information that are affected by perceptual
filling. At present, we are only aware of one other HMD-based simulation that addresses perceptual
filling as a symptom of low vision. Jones et al. [215]’s solution for perceptual filling used a simple “in-
painter” approach, in which the linear-weighted sum of the four nearest pixel values were used to fill
in areas where blind spots occurred. We argue that the approaches employed by the current work and
by Jones et al. [215] provide more accurate representations of the symptoms described by low vision
patients [87, 124, 194, 462] and observed by vision and optometry researchers [99, 237, 520]. This
approach stands in stark contrast to a long line of vision simulation research in which blind spots are
rendered as dark opacities in vision [69, 98, 127, 134, 140, 210, 269, 329, 340, 444, 477, 481].
For the next version of this simulation, we hope to better map the relationship between blur sever-
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ity in our simulation and experienced visual acuity. Such a mapping would offer two key advantages.
First, it would enable us to render blur with more precise control, in a way that corresponds to specific
visual acuity values. Second, it would provide a deeper understanding of how users perceive and in-
teract within the simulation under varying degrees of visual blur, ultimately leading to a more realistic
and informative user experience. For example, we may better decide the value of sigma employed by
our Gaussian filter at each level of the image pyramid by conducting a small user study in which partic-
ipants with normal vision perform visual acuity tests with different blur parameters for the simulation.
This approach for determining Gaussian filter parameters has also been used in prior vision simulation
research [183, 241, 512]. For example, Wu et al. [512] asked 8 participants to report letters on a Snellen
chart in VR to relate visual acuity to their blur factor. They found that acuity estimates fit an exponen-
tial curve. Using Landolt-C tests for visual acuity assessment, Hogervorst & van Damme [183] noted
an inverse, linear relationship between visual acuity and the threshold values used in their simulation.
The aforementioned research found different relationships between blur parameters and visual acuity,
because the publications employed different displays as well as different methods for inducing blur.
This underlies the need to perform a similar evaluation to determine the relationship between blur pa-
rameters and visual acuity in the current work.
In the interest of studying the relationship between visual field loss and space perception, we prior-

itize the simulation of visual field loss in this dissertation. However, vision impairments are heteroge-
neous. Patients with low vision may experience a wide range of other symptoms in conjunction with vi-
sual field loss, such as glare [215, 290], clouded lenses from cataracts [244], visual distortions [215, 310]
and more. It will be fruitful to consider visualizing additional vision symptoms in future iterations
of the simulation. This can be accomplished through the development of additional post-processing
effects and shaders. At present, for visual field map input, our simulation uses 2Dmatrices in which
a single value is stored at each datapoint. In future work, additional channels of information may be
added to encode information for different vision impairment symptoms (e.g., visual distortions).
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In this chapter, we describe our eye tracking data quality assessment, in which we evaluate the perfor-
mance of the underlying hardware of two eye-tracked HMDs to determine if these devices are appro-
priate candidates for deploying our vision simulation. Understanding the capabilities and the limita-
tions of an eye tracking system is imperative for gaze contingent applications [430, 439]. Understand-
ing data quality is especially important for eye-tracked vision simulations, since data quality determines
if virtual scotomas are correctly aligned with where a person is looking in the display [243, 430]. An-
other benefit to understanding the capabilities and limitations of an eye tracker is that one can use this
information to design more appropriate applications that consider the limitations of the technology.
For example, eye tracking researcher have developed methods to model appropriate area of interest
(AOI) sizes, based on the data quality and filtering algorithms employed by eye trackers [348, 415, 480].

9.1 Motivation & Goals

Data quality is particularly important for gaze contingent rendering applications, like the vision sim-
ulation described in the current work, since correct eye position data is required to ensure that ren-
dered images are correct when a person performs rapid eye movements. Poor data quality can influ-
ence fixation and saccade classification algorithms [52, 186, 188]. And poor data quality from eye
tracking devices can result in inaccurate interpretations of results in studies that look at gaze behav-
ior [52, 186, 188].
In the current work, we evaluate data quality in two candidate eye-tracked HMDs: the Varjo XR-3

and the HTCVive Pro Eye. Both displays use a camera based pupil-corneal reflection approach for eye
tracking, which is the dominant approach employed by commercially available eye-trackers [188, 189,
197]. With this approach, high speed video cameras in conjunction with infrared (or near-infrared)
spectrum illuminators are used to track the position of the pupil during eye tracking. The infrared (IR)
spectrum light creates highly visible reflections (or ‘glints’) on the cornea of the eye that remain rela-
tively fixed on the camera sensor. The relative positions of the pupil and corneal reflections can then
be used to determine eye movements. The difference in position between the pupil and reflections can
also be used to help compensate for head movements. In enclosed HMDs, IR spectrum is particularly
useful since IR light exposure can be controlled within the sealed headsets and since the human eye can-
not see IR light. The Varjo XR-3 uses a custom solution for their integrated eye tracking, and the HTC
Vive Pro Eye employs a Tobii integrated eye tracker. Both displays use two cameras within the headsets,
with one for each eye. We discuss the manufacturer specifications for data quality in both displays in
more detail in Section 9.
Krösl et al. [243] provide a concrete example of how poor data quality can negatively impact vision
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impairment simulations. Data quality was not explicitly measured in Krösl et al.’s work; however, they
documented several incidents that compromised the performance of their vision simulation during its
application. During a behavioral evaluation of their cataract simulation in the HTCVive Pro Eye, it
was discovered that participants were able to look around simulated scotomas due to eye tracking errors
and latencies within the eye tracking system.
Manufacturers of eye-tracking devices often provide specifications of system and eye tracking ca-

pabilities to showcase the best possible performance of their equipment. These statistics are typically
recorded under ideal laboratory scenarios (e.g., with appropriate lighting, with a chin rest, etc.). Ac-
cordingly, manufacturer specifications are useful for understanding the best-case performance of eye-
tracked devices, but they can be poor representatives of how the devices perform in real use cases [82,
430]. In addition, manufacturer specifications may not report added latencies from the display of
the HMD, which is important to consider for gaze contingent rendering applications like the one
we present in the current work. As such, before deploying our vision simulation, we evaluate three
of the most commonmeasures for evaluating data quality: (1) accuracy, (2) precision, and (3) data
loss [187, 188].

9.2 Eye TrackingMethods

9.2.1 Data quality measures
In this section, we define and operationalize the data quality measures of interest. We also report the
findings of prior research on data quality assessments in eye tracked head-mounted displays. Few em-
pirical data quality assessments of eye tracked HMDs exist, and it is difficult to generalize the results of
the current research due to differences across evaluated displays and evaluation protocols.

Accuracy

Accuracy, or spatial accuracy, is the closeness of the gaze position reported by an eye-tracking system
to the actual gaze position of a user. It is operationalized as the difference between the true gaze posi-
tion and the gaze position measured by the eye tracker. The smaller the offset; the better the accuracy.
Figure 9.1 (left) provides a visualization of eye tracking data with high and low accuracy. For evalua-
tions of accuracy, a participant is requested to look at a series of points positioned on a screen. Data is
then recorded when the participant’s eyes are fixating at each point. Accuracy is most often measured
as the average angular offset in degrees of visual angle between measured fixation locations and the cor-
responding locations of the fixation targets [185, 463]. Accuracy can be expressed with the formula
below (Equation 9.1), where θi represents the angular offset of a given sample and n represents a subset
of samples. Accuracy can be computed separately for horizontal and vertical dimensions.

θOffset =
1
n

n∑
i=1

θi (9.1)

Manufacturers often report accuracies close to 1.0◦ visual angle for mixed reality head-mounted dis-
plays with integrated eye-trackers (e.g., Table 9.1). However, in practice, the actual accuracy of eye-
trackers is often only comparable to manufacturer specifications for fixation targets near the center of
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Figure 9.1: Visual representations of accuracy and precision (left) and data loss (right)

a display [280, 358, 430]. This degradation of eye tracking quality as eye movements approach the pe-
riphery of a display is a well documented problem in display-based eye trackers [188, 334].

Precision

Precision, or spatial precision, is the variable error (or the “closeness” of a set [334]) of the reported
gaze positions. In eye tracking research, it is often also described as the reproducibility of a gaze posi-
tion from one sample to the next when gaze position is stable [177, 188]. Small deviations between
individual data points indicate high precision; large deviations indicate low precision. Figure 9.1 (left)
provides a visualization of eye tracking data with high and low precision. Accuracy and precision are
typically measured concurrently using the same procedure. Eye tracking precision is most frequently
operationalized as either the standard deviation (STD) of the gaze position data samples or the root
mean square of inter-sample distances (RMS-S2S) [185, 335]. STDmeasures the spatial dispersion
of eye movement position data, whereas RMS-S2S measures the magnitude of displacement between
subsequent gaze samples [335]. In other words, RMS-S2S captures the sample-to-sample jitter present
within the system.
Reporting both measures is necessary to create a more complete picture of precision, since the two

precision measures capture different aspects of variance in eye tracking data accuracy [188, 335]. There
are ongoing debates within the eye-tracking research community about the trade-offs between these
two approaches for measuring precision. For example, some researchers have argued that RMS-S2S,
which relies on sample-to-sample distances, is inherently biased towards eye trackers with high sam-
pling rates. Possible evidence for bias have been demonstrated in prior investigations by both Blignaut
and Beelders [51] andWang et al. [490]. However, Niehorster and colleagues [335] have pointed out
that there are fundamental issues with the referenced eye tracking assessments, such as the downsam-
pling of already filtered data, that undermine the claim of bias.
Precision can be computed separately for horizontal and vertical dimensions. Mathematically, STD

is the square root of the sum of variance over a subset of data, where variance is the squared differ-
ence between datapoints and the mean of those datapoints. Equation 9.2 expresses the formula for
the STD [187] for a set of n data samples, where xi represents a data sample and x̄ is the average of the
data samples.

θSTD =

√√√√ 1
n

n∑
i=1

(θi − θ̄)2 =

√√√√ 1
n

n∑
i=1

(xi − x̄)2 + (yi − ȳ)2 (9.2)
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Equation 9.3 expresses the formula for RMS-S2S [187], where θi denotes the angular distances be-
tween successive samples for a set of n data samples.

θRMS =

√√√√ 1
n

n∑
i=1

θi2 =

√
θ12 + θ22 + ...+ θn2

n
(9.3)

For accurate calculations of common eye tracking behaviors, an RMS-S2S lower than 0.05◦ is typically
recommended [184, 493]. However, larger precision errors may be permissible for gaze contingent vi-
sion simulation since scotomas typically cover areas of the visual field as large or larger than the fovea,
which spans 1.5− 2◦ of the visual field.
Manufacturers rarely report eye tracking precision in HMDs (See Table 9.1). However, given the im-

portance of precision for interpreting gaze position data, XR researchers have investigated a number of
methods of quantifying precision in eye tracked HMDs. Thus far, RMS-S2S has been the most com-
mon measure used to report precision. Pastel et al. [358] reported an average precision of 0.07◦ in an
HTCVive retrofitted with an SMI eye tracker, while Sipatchin et al. [430] reported an average of 2.17◦
in the HTCVive Pro Eye.

Data loss

Data loss refers to the percentage, or portion, of samples during which no gaze coordinate was re-
ported [187, 188, 493] during a session. Figure 9.1 (center) provides a visualization of data loss in eye
tracking data. Data loss is reported relative to the sampling frequency of the eye tracker. For example,
it is expected that a 200 Hz eye-tracker, like the one employed by the Varjo XR-3, will deliver 200 gaze
coordinates per second. If 20 frames of that data are missing, then 10% data loss is observed. Data loss
is another important measure to include in data quality evaluations since data loss can greatly affect
dependent eye tracking measures like fixations [494].
Some data loss during eye tracking is inevitable. Blinks alone can account for about 2% of data loss in

a given data set [185]. Data loss can also occur when glasses, eyelashes, makeup, or other factors prevent
the video camera from capturing an image of the person’s eye. In the HTCVive Pro Eye, Sipatchin
et al. [430] reported 3.69% data loss on average when head movements were kept still and 7.76% data
loss when head movement was encouraged. In the current work, we use the formula for data loss from
Nystrom et al. [341], in which the proportion of valid data samples Pv is defined as:

Pv =
Nvalid

Nall
, Pv ∈ [0, 1] (9.4)

whereNvalid andNall represent the number of valid samples and the total number of samples col-
lected, respectively. This proportion is then converted to a percentage.

9.2.2 Data preprocessing
Data calibration and validation with fixation targets are contingent on the assumption that participants
are able to maintain a consistent fixation towards a target. However, even during fixations, the human
eyes are in constant motion (e.g., microsaccades, gaze drift). Therefore, data preprocessing and cleaning
is often required to correctly interpret fixation data.
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Table 9.1: Manufacturer provided specifications for the Varjo XR‐3 and HTC Vive Pro Eye*†‡. The reports of
accuracy for the HTC Vive Pro Eye are based on the central 20◦ of the display†.

Varjo XR-3
Display Specifications Eye Tracking Specifications

field of view (◦) 115× 90 accuracy (◦) 1
IPD range (mm) 58-72 precision (◦) -
refresh rate (Hz) 90 sampling frequency (Hz) 200

HTC Vive Pro Eye
Display Specifications Eye Tracking Specifications

field of view (◦) 107× 107 accuracy (◦) 0.5-1.1
IPD range (mm) 61–72 precision (◦) -
refresh rate (Hz) 90 sampling frequency (Hz) 120

Standard data cleaning protocols for eye tracking measures do not exist [150]. There are as many ap-
proaches to eye tracking data preprocessing as there are research groups analyzing that data. Often, the
methods employed are dictated by the precedent set by a particular research group, by the experimen-
tal task, and by the eye movement measure of interest [74, 123]. Researchers may discard suspected,
spurious data points based on distance thresholds, temporal thresholds, event detections, statistical out-
lier detection methods, fixation algorithms, manual inspection, or some combination of these meth-
ods. They may also completely remove a participant’s data from an analysis if smoe percentage of their
data is invalid. A recent review on data cleaning practices for eye movement data in reading research
by Eskenazi et al. [115] found that 89% of 192 surveyed articles reported using at least on data cleaning
method. In the last few years, a growing number of researchers have expressed concern over inconsis-
tencies in both the reporting and the application of data cleaning methods across eye tracking publica-
tions [74, 123, 149, 150, 177].
One reason for this concern is that, although data processing is often necessary when analyzing eye-

tracking data, what methods are chosen can impact on the results of one’s analyses [177, 349]. Hessels
et al. [178] demonstrated that how areas of interest (AOIs) are defined (e.g., size, position) can impact
experimental outcomes in visual attention research. And Shic et al. [422] provide a particularly extreme
example in which fixation-classification algorithm settings reversed the direction of differences between
two experimental groups in an experiment where fixation duration was the primary measure.
At present, we are aware of three assessments of eye-tracking accuracy and precision in the HTC

Vive Pro Eye (Adhanom et al. [25], Schuetz et al. [413], & Sipatchin et al. [430]) and two with the
HTCVive fitted with an SMI eye tracker (Lohr et al. [280], Pastel et al. [358]). As expected, inconsis-
tencies in data processing reporting and methods can be found among these studies, as well. The pub-
lication by Adhanom et al. [25] reported a cursory assessment of eye tracking accuracy and precision
with the HTCVive Pro Eye using the author’s tool, Gazemetric. However, the authors did not report
what, if any, data cleaning steps were employed in their assessment. The other four articles employed
multiple data processing methods–two of which were employed by all of the articles. This included:

*Varjo Technologies Oy (2024). https://developer.varjo.com/docs/get-started/eye-tracking-with-varjo-headset
†HTCCorporation (2024). https://developer.vive.com/resources/hardware-guides/vive-pro-eye-specs-user-guide/
‡VRCompare (2024). https://vr-compare.com
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the removal of invalid data samples (data points where neither the left nor right eye were tracked) and
the removal of data samples at the start of a fixation trial (400-700ms) [280, 358, 413, 430]. Eye track-
ing researchers (e.g., Holmqvist et al. [187]) often recommend removing samples at the start of fixation
trials in order to avoid the influence of corrective saccades and post-saccadic oscillations when a partici-
pant initially transitions into fixation [42, 239].
Three of the four articles also used distance thresholds to remove spurious data points—although

each research group adopted a different distance. Schuetz et al. [413] incorporated a threshold of 5◦
visual angle away from a fixation target; Pastel et al. [358] used a threshold of 3◦ visual angle; and a
preprint by Lohr et al [280] used a threshold of 2◦ visual angle. Lohr et al. [280] additionally applied
Tukey fences to remove potential outliers. Sipatchin et al. [430] did not employ any additional data
cleaning methods.
Recall that data preprocessing decisions have a notable impact on measures like accuracy and pre-

cision. We see this play out in the studies conducted with the HTCVive Pro Eye, as well. Schetz et
al. [413] reported an average accuracy of 1.22◦ before and 1.08◦ after removing outliers. In contrast,
Sipatchin et al. [430] reported substantially higher overall errors in gaze angle, with an average accu-
racy of 4.16◦. One contributing factor to this discrepancy in results is data preprocessing. Schuetz et
al. performed an additional data processing step to remove eye movements there were not fixations.
Sipatchin et al. did not. Another contributing factor was related to experimental design. Sipatchin et
al. [430] sampled a much wider span of the HTCVive Pro Eye’s field of view (53.2◦ × 53.2◦) than the
30◦ × 30◦ field of view that was sampled in Schuetz et al. [413]. The degradation of eye tracking data
quality as one’s gaze moves farther from the center of a display has been well documented by previous
display-based eye tracking research [120, 190, 334, 341].
Moving forward, it will be important to consider how our own experimental design and analysis

decisions impact our results. Understanding this will allow us to better contextualize our data quality
investigations with the HTCVive Pro Eye and the Varjo XR-3.

9.3 Study 7 - Differences in data quality between eye-trackedMR
HMDs

Understanding the data quality of eye tracked HMDs is imperative for determining their suitability
for applications like simulated vision and foveated rendering, which rely on gaze-contingent rendering.
Data quality is equally important for accurate interpretation of various eye-tracking behavior measures.
As such, we evaluated data quality in the Varjo XR-3 and HTCVive Pro Eye. The reported data qual-
ity values are critical considerations for both the application of our vision simulation and for future
research utilizing the eye tracking functionalities of these devices.

Hypotheses

We predicted better data quality in the Varjo XR-3 for both accuracy and precision. This prediction
was motivated by prior data quality assessments conducted in the HTCVive Pro Eye, which have re-
ported notably larger position errors than what was expected based on the eye tracking accuracy values
provided by the manufacturer [25, 413, 424, 430]. Although we are not aware of any published eye
tracking data quality assessments conducted to date in the Varjo XR-3, the manufacturer reported eye
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tracking specifications provided by Varjo generally describe lower errors and higher sampling rates for
eye tracking than those reported for the HTCVive Pro Eye.

9.3.1 Materials
We employed two eye-tracked head-mounted displays for our investigation: the Varjo XR-3 and the
HTCVive Pro Eye. The Varjo XR-3 has differing maximum resolutions for the center and periph-
eral regions of the display. Within the center (27◦ x 27◦) of the screen, images are rendered with a pixel
resolution of 1920 x 1920 (70 ppd uOLED) per eye. Beyond this region of the screen, images are ren-
dered with a pixel resolution of 2880 x 2720 (30 ppd LCD) per eye. The HTCVive Pro Eye maintains
the same resolution across an entire display. Its maximum per eye resolution is 1440 × 1600 (14 ppd
OLED). The HMDs employ different eye tracking solutions. Both eye-trackers are binocular. The
maximum sampling frequency of the Varjo XR-3 is 200 Hz, while the maximum sampling frequency
for the HTCVive Pro Eye is 120 Hz. Both systems use eye tracking to automatically compute a user’s
IPD. Additional information about the display and eye tracking specifications for these devices can be
found in Table 9.1.
For this experiment, the HMDs were powered by aWindows 10 machine with an AMDRyzen 9

7950X 16-core processor, 128 GB RAM, and an NVIDIA GeForce RTX 4090 graphics card. Applica-
tions for the HMDs were developed in Unity version 2021.3.4f1 with the C# programming language.
Position tracking for both displays was performed using SteamVR (v2.1.10) and the SteamVRTrack-
ing System with two 2.0 Base Stations. The Varjo Base Station (v3.10.3) software was used to run the
device on our computer. The Varjo XR Plugin (v3.5.0) was then used to extract eye tracking data. The
HTCVive Pro Eye required the SRanpal Runtime (v1.3.6.11) software to access eye tracking data. The
OpenXR Plugin (v1.4.2) and the VIVE OpenXR Plugin-Windows (v1.0.13) packages were then used
within Unity to extract eye tracking data.

9.3.2 Participants
Twenty-two individuals (12 female, 10 male) volunteered for our experiment. The average age was
28.2± 4.5 years (min: 20, max: 38). Eye tracking studies often prescreen participants for vision cor-
rection, since glasses and contact lenses can degrade eye tracking data quality [341, 413]. We did not
prescreen participants for vision correction during recruitment, because we were interested in mea-
suring the data quality of these systems for a more representative population. Five participants wore
glasses; one wore contact lenses.
Our methods were approved by the local institutional review board, and written consent was ob-

tained from volunteers prior to participation. Each participant was given 10 USD for approximately 20
minutes of their time.

9.3.3 Design
Our experiment used a within-subjects design such that all participants performed the same data qual-
ity assessment in both the Varjo XR-3 and the HTCVive Pro Eye. A within-subjects design was desir-
able for making comparisons between the two devices, because between participant factors—including
differences in eye physiology (e.g., eye color, skin pigmentation, lash direction, baseline pupil size, etc.)
and the use of vision correction (e.g., glasses, contacts)—can impact eye tracking data quality [176,
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341]. The order in which participants experienced the two displays was counterbalanced to mitigate
potential effects of order.
The processes for calibrating an eye tracking system and for validating an eye tracking system are

similar. Eye-tracking validation is most often performed immediately after the eye tracking system has
been calibrated. Both calibration and validation require participants to view a series of fixation tar-
gets. The positions of the fixation points used during validation should differ from the position of the
points used in calibration to avoid underestimations of accuracy and precision [188, 341, 463]. Be-
cause the human eye is constantly in motion, data preprocessing is almost always required to remove
measurements that were taken when a participant’s eye moved away from the target due to inattention,
microsaccades, or gaze drift.
To ensure fair comparison between the two systems, we employed eye tracking calibration routines

with the same number of fixation targets for both the HTCVive Pro Eye and the Varjo XR-3. Specif-
ically, we used their native 5-point calibration solutions. The fixation targets for both displays are cir-
cular; however, the target for the HTCVive Pro Eye is a solid circle while the target for the Varjo XR-3
is an animated concentric circle that becomes smaller as the participant’s gaze nears it. Both devices use
a rectangular layout to position the 5 fixation targets, with a single point at the center of the display.
For both devices, the size and the positions of the fixation targets used during calibration were not ac-
cessible. Information about what filtering algorithms were applied to eye tracking data were also not
accessible. All participants were able to calibrate using the eye-trackers. Both devices required users to
have “valid” calibration data before they could continue to use eye tracking; however, the criteria for
acceptable eye tracking calibration was not provided for either device.
For our data quality assessment, fixation targets spanned the central 20◦ of each display’s field of

view. We selected the central 20◦ to better compare the accuracy reported in our current evaluation
against the values reported by the HTCVive Pro Eye’s specifications (See Table 9.1). The HTCVive
Pro reports an accuracy of 0.5◦-1.1◦ within a 20◦ field of view. It does not provide a report of accuracy
outside of this region. In contrast, the Varjo XR-3 reports an accuracy of 1◦, but it does not specify
what region of the display’s field of view was assessed.
Our assessment used 9 fixation targets, which were positioned in a circular layout with a single point

at the center of the display (See Figure 9.2). All other fixation targets were positioned 10◦ visual angle
away from the center. We used a white, annuli (ring) as our target. Each annulus had an outer diameter
that measured 1.0◦ visual angle and an inner diameter that measured 0.5◦ visual angle. The targets were
rendered against a black plane that was positioned 1 meter in front of the viewer. This plane was fixed
to always appear immediately in front of the viewer—even if their head moved. The background of
the virtual environment beyond the plane was also rendered as black so that the black plane and the
background were visibly indistinguishable.
Each target was presented twice during the experiment. As a result, participants completed 18 fixa-

tion trials for each device. The presentation order for the targets was pseudo-randomized to prevent the
same target from appearing consecutively. Overall, data from 792 fixation trails were collected across all
participants, with 396 fixation trials for each device.

9.3.4 Procedure
Before starting the experiment, the participant reported their basic demographic information. They
were debriefed on the purpose of the experiment, and they provided written consent for their par-
ticipation. Then, the experimenter guided the participant to a chair where they would remain seated
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Figure 9.2: Circular layout of the 9 fixation targets used for the data quality assessment. Targets spanned 20◦ of
each device’s FOV. The eight exterior targets were positioned 10◦ visual angle away from the center. Each target
was an annulus with an outer diameter of 1.0◦ visual angle and an inner diameter of 0.5◦ visual angle.

throughout the experiment. The participant was introduced to the two HMDs, and they were shown
how to adjust the headset to fit and how to interact with the eye-tracking calibration system. The ex-
perimenter further specified that, during the calibration and validation tasks, participants should try to
look at the “center-most” point of each target.
After the debriefing, the participant donned their first assigned HMD. The device’s native eye track-

ing calibration procedure guided the participant through the headset adjustment task, in which it
prompted the user to move the headset up or town to better capture their eyes if necessary. The calibra-
tion procedure also calculated participants’ IPD. Then, the 5-point eye tracking calibration procedure
commenced.
Immediately after calibration was completed, the experimenter gave the participant a wireless com-

puter mouse, and they started the eye tracking data validation program. Unlike the calibration pro-
cedure, which progressed automatically, the validation procedure advanced to the next trial (the next
fixation target) only after the participant pressed the left mouse button. At the start of every experi-
mental trial, a single fixation target appeared. Once the participant had the target in sight and was ready
to begin recording accuracy and precision, they clicked the mouse button. We relied on user input to
ensure that a participant moved their gaze to a target before data recording was initiated [341]. After
3 s, the target disappeared and the next target was revealed. This process repeated until the end of the
experiment. The same process was repeated for the second HMD.
Accuracy and precision were only recorded during the 3s capture window of each experimental trial.

Data loss was recorded throughout the application’s runtime.

9.3.5 Analysis

Preprocessing

The binocular eye trackers we employed for this study provide combined, left, and right eye-tracking
information through their respective SDKs. However, our primary analysis only evaluates the com-
bined gaze vectors, since the combined vector is what most gaze interactions employ by default. Infor-
mation for the left and right eyes, separately, was collected but not formally analyzed.
In Section 9.2.2, we discussed common data preprocessing approaches for cleaning eye tracking data

as well as several approaches employed by recent studies conducted with the HTCVive [280, 358] &
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Table 9.2: Samples removed, across all participants, at each step of the eye tracking data cleaning and data
processing steps for the HTC Vive Pro Eye and the Varjo XR‐3. Table rows indicate the different data processing
steps, while the table columns report the total number of samples, the number of samples removed, the
percentage of the remaining samples, and the percentage of the samples removed. The Data Loss Dataset
included data from the start to the end of the application. The Fixation Task Dataset only included samples
collected during fixation trials. Recall that the sampling rates of the eye trackers differ for each display (120Hz &
200Hz)

HTCVive Pro Eye Varjo XR3

Data Processing Step Total Removed % Total % Removed Total Removed % Total % Removed

All Data 369,193 - 100.0% - 586,527 - 100.0% -
Startup Compensation 359,070 10,123 97.26% 2.74% 569,327 17,200 97.07% 2.93%

Data Loss Dataset 359,070 97.26% 569,327 97.07%

Performance Data Only 142,762 - 100.0% - 234,570 - 100.0% -
Event Contingency 119,225 23,537 83.51% 16.49% 196,368 38,202 83.71% 16.29%
Invalid Data 117,479 1,746 82.29% 1.22% 192,164 4,204 81.92% 1.79%
Outlier Removal 114,470 3,009 80.18% 2.01% 177,660 11,552 77.00% 4.92%

Fixation Task Dataset 114,470 80.18% 177,660 77.00%

the HTCVive Pro Eye [25, 413, 430]. The majority of this work relied on distance thresholds (e.g.,
the removal of all samples farther than 3◦ visual angle from a fixation target) to remove spurious eye
movements made by participants during fixations [280, 358, 413]. However, distance thresholds would
be an inappropriate choice for the current study, since we needed to compare the performance of eye
tracking solutions with different specifications. The use of absolute distance thresholds could bias our
analysis, since the spread of errors captured by the two devices were likely to differ [348]. In addition,
we may be able to derive a reasonable distance threshold for the HTCVive Pro Eye based on the results
of previous data quality publications, but no reproducible data quality assessments of the Varjo XR-3
have been published to date.
For our data loss assessment (Data Loss Dataset, Table 9.2), the entire data set from the start to the

end of the applications (All Data, Table 9.2) were used—except for the first 200ms of collected data
(Startup Compensation, Table 9.2). This portion of the data was excluded to ensure that eye tracking
registration and recording was not affected by initial program startup. The assessments of accuracy and
precision (Fixation Task Dataset, Table 9.2) only included data collected during experimental trials,
where each fixation trial consisted of 3s (3000ms) of data and where data recording was initiated by
participant button press (Performance Data Only, Table 9.2). Then, the following steps were taken to
clean the data:

• Event Contingency (Table 9.2). The first 500ms of data were discarded for each trial. These data
were removed to prevent any potential interference with fixation behavior that may have been
caused by the button pressing event [150]. The remaining 2500ms were included in the next
data cleaning step.

• Invalid Data (Table 9.2). Invalid gaze data was excluded from analysis. Gaze samples in which
the previous sample was invalid were also excluded, since sample-to-sample distances for RMS-
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S2S could not be calculated for samples in which the previous data point was invalid. Discarding
invalid samples is necessary since, as noted by Hessels et al. [177], accuracy and precision cannot
be properly measured when the eye itself is not tracked. In this work, we considered gaze samples
invalid not only when combined gaze data was invalid—but also when either the left or right eye
was not tracked (as reported by the SDKs).
Here, we should note differences in how eye tracking status was reported in the two SDKs.
HTC’s SRanipal SDK provided a binary flag (a boolean) to describe the tracking status of the
left, right, and combined eye data: [True, False]. Varjo’s SDK similarly used a binary flag to re-
port the status of combined eye data: [Valid, Invalid]. However, it provided more nuanced feed-
back for the left and right eyes: [Tracking, Compensated, Visible, Invalid]. Because we lacked
insight into how and when eye tracking was compensated for in either device, we only removed
eye data that was explicitly marked as False or Invalid.

• Outlier Removal (Table 9.2). Gaze fixation tasks assume that a participant’s gaze is stable through-
out an experimental trial. However, in reality, a subset of the data collected during this inter-
val can be attributed to non-fixational eye movements (e.g., gaze drift). In this work, to iden-
tify and remove suspected, spurious gaze data, we utilized the modified Z-score, which is based
on the Median Absolute Deviation (MAD) [165, 271]. Median-based outlier detection meth-
ods, like MAD and the modified Z-score, are less sensitive to outliers and cut-offs than those
based on the mean [400, 420]. This property was desirable for our outlier detection method,
since eye tracking offsets were strictly positive and had a prominent right skew (e.g., Figure 9.3).
Kolmogorov–Smirnov tests further confirmed that data were not normally distributed for either
device. We considered any datapoints with absolute modified Z-score exceeding 3.5 to be out-
liers. 3.5was selected as a conservative threshold based on the recommendation from Iglewicz &
Hoaglin [202].

Figure 9.3: Frequency density plot of accuracy data in the HTC Vive Pro
Eye and the Varjo XR‐3 before (left) and after (right) eye tracking data
processing.

Figure 9.4: Q‐Q plots of empirical vs.
fitted data for accuracy (left) and
precision (right)

Table 9.2 reports the number as well as the percentage of samples that were affected by each data
processing step. Note that the total number of samples collected for the HTCVive Pro Eye and the
Varjo XR-3 differs. This is due to the higher sampling rate of the eye tracker in the Varjo XR-3 (200Hz)
in comparison to the 120Hz sampling rate of the HTCVive Pro Eye’s eye tracker (Recall Table 9.1).
The impact of the data processing steps for each device can also be observed through the frequency
density plots in Figure 9.3.
We used manufacturer provided callback functions to sample the eye tracking data at the appropriate

rates for each device (120Hz for the HTCVive Pro Eye, 200 Hz for the Varjo XR-3). Timing for events
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(e.g., registration of mouse click events) and rendering, however, were handled within the main Unity
thread. Unity is not thread-safe, so functions fromUnity’s API cannot be called within the eye tracking
callback thread. Because of this, there may be slight differences in event timing. Given the experimental
task (fixation task) and the data processing steps employed, we do not suspect that this had a notable
impact on our analysis.
In this section, we have provided a detailed discussion of our data preprocessing steps. In recent

years, several research groups have called for better reporting and rational for the selection of data pro-
cessing steps taken when analyzing eye tracking data [74, 123, 149]. And, as we have seen from the
prior data quality experiments conducted with the HTCVive Pro Eye, data processing can dramati-
cally impact experimental outcomes. We believe reproducible and transparent reporting is particularly
important for the current work, since our work is the first to report eye tracking data quality for the
Varjo XR-3.

Statistical Analysis

Eye-tracking data is not always well described by a Gaussian distribution, since the variability of this
data is not only explained by human gaze behavior–which may be argued as Gaussian in accordance
to the Central Limit Theorem [251]—but also systemmeasurement noise. For example, when feature
localization of an eye tracker becomes unstable during fixation tasks, rapid spikes in gaze position sig-
nals can occur due to rapid changes in detected pupil locations. In the current work, we can observe
these incidents of measurement errors in the dramatic spikes of our raw gaze position scatter plots (Fig-
ure 9.2). To complicate this matter further, the characteristics of measurement noise vary based on the
eye tracker [335] and based on the eye tracking filter employed [334].
The Gamma distribution provides a reasonable match for the properties of the angular offset’s the-

oretical distribution, since the angular offsets are strictly positive. In the current work, we can visually
observe the abrupt cutoff at zero and the heavy right tail of distributions in the density plots of gaze
position offsets for accuracy measurements in Figure 9.3. Mathematically, the Gamma distribution
also provides an appropriate explanation for the relationship between the mean and variance in the
current work, since the variance of the Gamma distribution increases proportionally with the mean.
Accordingly, the Gamma distribution has been employed in prior eye-tracking research to simulate
gaze positions during fixation [480], to model saccade movement [130], and to model fixation dura-
tion [416]. This decision is reinforced by Kolmogorov-Smirnov tests and quantile-quantile (QQ) plots
(Figure 9.4), which indicate that accuracy measurements do not conform to a normal distribution for
either the HTCVive Pro Eye (D=.611, p<.001) or the Varjo XR-3 (D=.539, p<.001).
Accordingly, to understand differences in data quality between the HTCVive Pro Eye and the Varjo

XR-3, we employed a generalized linear mixed-effects model (GLMM) for our analysis. GLMMs are
a form of generalized regression that is appropriate for repeated-measures designs, because they allow
for accounting of both within- and between-participant variability [386]. GLMMs are well-suited to
dealing with unbalanced datasets [26], which is of particular relevance for eye tracking data analyses be-
tween systems with different sampling rates. In addition, GLMMs allow for the specification of specific
data distributions and link functions in the event that data does not meet Gaussian distribution data
assumptions.
Significance levels were calculated using Satterthwaite approximation via the lmerTest package [250].

To interpret the interaction between device and fixation target, we calculated planned contrasts on the
estimated marginal means using the emmeans package in R. To mitigate the risk of Type I error from
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Figure 9.5: Scatterplots of the gaze positions in degrees visual angle of the combined gaze vectors for each of the
nine fixation targets. Data are plotted for the HTC Vive Pro Eye (left) and the Varjo XR‐3 (right). Black cross
points indicate the true positions of fixation targets. Gaze positions beyond 20◦, which corresponds to 2% of the
total data for each device, have been clipped to improve the visibility of the plot.

multiple comparisons, we employed Bonferroni correction to adjust for pairwise comparisons.

Accuracy Accuracy was operationalized as the position offset in degrees visual angle between a
gaze sample and a fixation target. To better understand eye tracking accuracy, we fit our GLMMwith a
Gamma distribution function (identity link), using the glmer function from the lme4 library [40] in R
version 4.3.2 [379]. The model included angular offsets as continuous outcomes.
Our experiment was designed to evaluate differences in eye tracking data quality between two de-

vices. Accordingly, device (2 levels: HTCVive Pro Eye, Varjo XR-3) was treated as a categorical pre-
dictor in our model. The order devices were experienced was also included as a categorical predictor (2
levels: first, second). Although we counterbalanced the order in which the devices were experienced, we
anticipated that our participants, whom had little prior experience with eye trackers, may improve at
the fixation task over time. The fixation targets themselves were also included as categorical predictors
(9 levels), since data quality varies with respect to gaze angle [188, 334]. To account for individual vari-
ability in gaze behavior over repeated measures, we included participants as a random intercept (1|Id).
The formula for our GLMM in glmermodel syntax is expressed by Equation 9.5:

Υ = Offset ∼ Device+ Target+ Device : Target
+ Order+ (1|Id)

(9.5)

Because our predictors were categorical variables, an effects coding scheme [83] was used to ensure
that parameter estimates corresponded to main effects [58]. We used simple contrast coding to com-
pare each level of our categorical variables. Contrast coding required setting reference levels for our
categorical factors. For device, the HTCVive Pro Eye was set as the reference level. For order, the first
block of trials was set as the reference level. For our fixation target predictor—which had 9 levels—the
center fixation target was set as the reference.
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Table 9.3: Accuracy and precision for targets, collapsed across participants, are reported. Accuracy is presented
with both the mean and median angular offset for the combined gaze vectors. Precision is reported using
standard deviation (STD) of angular offset samples as well as the root mean squared of inter‐sample distances
(RMS‐S2S).

HTCVive Pro Eye Varjo XR3

Accuracy Precision Accuracy Precision
Target Mean Median STD RMS Mean Median STD RMS

Center 1.55 1.17 1.07 0.0948 0.92 0.82 0.56 0.0100
Left 2.05 1.86 1.22 0.0995 0.94 0.82 0.64 0.0119
Right 2.03 1.73 1.17 0.0736 1.04 0.98 0.54 0.0094
Top 1.40 1.09 0.91 0.0584 1.03 0.98 0.57 0.0095
Down 1.79 1.74 1.04 0.0665 0.93 0.77 0.59 0.0096

Top Left 1.69 1.38 1.06 0.0760 0.99 0.86 0.63 0.0113
Top Right 1.53 1.38 0.97 0.0535 1.16 1.01 0.66 0.0099
Bot Left 1.93 1.68 1.09 0.0826 0.97 0.82 0.68 0.0103
Bot Right 1.96 1.68 1.11 0.0799 1.07 0.86 0.71 0.0096

TOTAL 1.77 1.57 1.10 0.076 1.01 0.88 0.62 0.0101

Precision We report both RMS and STD precision for our predictors in the results section. How-
ever, for our statistical analysis of precision, we evaluated RMS-S2S (or just RMS) precision. RMS pre-
cision was selected to better draw comparisons between our work and previous eye tracking data qual-
ity research in eye-tracked HMDs, since this measure has been the most commonly employed byMR
researchers [22, 220, 358, 430]. To analyze RMS precision data, which had numerous zero and near-
zero measurements, we required a method that could handle zero-inflated data [278]. Kolmogorov-
Smirnov tests and quantile-quantile (QQ) plots (Figure 9.4) further support that precision measure-
ments did not conform to a normal distribution for either the HTCVive Pro Eye (D=.5, p<.001) or the
Varjo XR-3 (D=.5, p<.001). The sharp upward curve of the precision QQ plot is a particularly strong
visual indicator that the log link function is appropriate for this data. As such, for our analysis we em-
ployed the glmmTMB package in R [60] to specify a zero-inflated Gamma distribution (ziGamma) with a
log link function. The log link function is commonly employed with Gamma fit mixed models, since
it naturally corresponds to the exponential family distribution and since the log link helps to ensure
that predicted values remain positive. The predictors for our model were the same as used previously
(Equation 9.5).

9.3.6 Results
In this section, we report the descriptive statistics of our data quality measures as well as the results of
our statistical analyses for accuracy and precision.
Figure 9.5 shows the raw gaze position offsets in degrees visual angle, collapsed across participants,

for each fixation target in the HTCVive Pro Eye (left) and the Varjo XR-3 (right). Examining the raw
data through plots provides valuable insights beyond statistical analyses. For example, the plots reveal
a significantly smaller spread in data points for the Varjo XR-3 compared to the HTCVive Pro Eye.
This visual confirmation supports the interpretation of our statistical results that we report in the sub-
sequent sections. In addition, visualizing the raw data allows us to observe artifacts that are likely due to
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Figure 9.6: Violin plots for accuracy data (left) and for precision data (right) by device. The mean is indicated by a
point.

eye tracker measurement errors (e.g., the sharp spikes in gaze offsets seen in the bottom-right target of
both plots).

Accuracy

The average and median accuracies for the HTCVive Pro Eye and the Varjo XR-3, as well as the average
and median accuracies for each fixation target for each display, are reported in Table 9.3. The results
of our statistical analysis for accuracy are reported in Table 9.4. We report regression coefficients (B),
which provide an estimate of effect size; the confidence interval of the coefficients (CI); the ratios of
estimated fixed effect coefficients to their standard error (t-value); and significance levels (p-value). For
interactions, z ratios are reported.

Device Our statistical analysis supported that the difference in accuracy we found between the
HTCVive Pro Eye and the Varjo XR-3 was significant. We found a main effect of device in which gaze
position offsets were .77◦ larger in the HTCVive Pro Eye (B = −.77, t = −228.78, p < .001) than
in the Varjo XR-3. Accuracy measurements for the two devices are visualized through violin plots in
Figure 9.6
One HMD’s eye tracking accuracy matched manufacturer specifications, while the other deviated

(See Table 9.1 for device specifications). In our evaluation, the HTCVive Pro Eye exhibited gaze po-
sition offsets exceeding the expected range (.5 − 1.1◦) with an average of 1.77◦ (Min = .002,Med =
1.53,Max = 5.47) across trials and participants. Conversely, the Varjo XR-3 displayed accuracy mea-
surements of 1.01◦ on average (Min = .010,Med = .88,Max = 3.01) that closely matched the man-
ufacturer’s specified value of 1.0◦. These findings highlight the importance of independent evaluations
of eye tracker data quality, since manufacturer provided specifications may not reflect the real-world
performance of these systems.

Order There was a small but significant effect of order, in which accuracy was better by .03◦ on
average in the second block of experimental trials (B = −.03, t = −8.67, p < .001). On average,
accuracy was 1.34◦(SD = .90) in the first block of trials and 1.27◦(SD = .93) in the second block of
trials. It is perhaps not surprising that there was a small improvement in eye tracking accuracy in the
second block of trials, given that we did not actively seek out participants with prior experience with eye
tracking during recruitment for this study.
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Table 9.4: Results of planned comparisons using a Gamma regression model are displayed for accuracy data.
Estimates represent the regression coefficients, CI is the confidence interval of the regression coefficient. The
Intercept value is the grand mean position offset in degrees visual angle across both devices. Negative values for
Estimates indicate that the first level of the predictor in the comparison had a larger average position offset (i.e.,
lower accuracy) than the second factor. Positive values indicate that the second level of the predictor had a larger
average position offset (i.e., lower accuracy). Interactions are the result of planned contrasts on the estimated
marginal means with Bonferroni correction.

Predictors Estimates CI t-value p-value Random Effects Variance

(Intercept) 1.41 *** [ 1.27 1.54 ] 20.72 <.001 σ2 .31
Device vive – varjo - .78 *** [ - .78 - .77 ] -228.78 <.001 τId .03
Order first – second - .03 *** [ - .04 - .02 ] -8.67 <.001 ICC .09

Target center – left .21 *** [ .20 .22 ] 30.63 <.001 Model Fit

Target center – right .30 *** [ .29 .32 ] 43.38 <.001 Marginal R2 .327
Target center – top - .07 *** [ - .09 - .06 ] -12.99 <.001 Conditional R2 .390
Target center – bottom .16 *** [ .15 .17 ] 24.49 <.001
Target center – top left .03 *** [ .02 .04 ] 5.24 <.001
Target center – top right .06 *** [ .05 .07 ] 9.52 <.001
Target center – bottom left .17 *** [ .16 .18 ] 25.34 <.001
Target center – bottom right .26 *** [ .25 .28 ] 37.93 <.001

Interactions Estimates CI z-ratio p-value

Device×Target
center - left | vive - .41 *** [ - .45 - .37 ] - 31.95 <.001
center - right | vive - .48 *** [ - .52 - .44 ] - 37.19 <.001
center - top | vive .18 *** [ .14 .21 ] 17.20 <.001
center - bottom | vive - .34 *** [ - .38 - .30 ] - 27.85 <.001
center - top left | vive - .06 *** [ - .10 - .03 ] - 5.78 <.001
center - top right | vive .06 *** [ .02 .09 ] 5.31 <.001
center - bottom left | vive - .38 *** [ - .41 - .34 ] - 30.44 <.001
center - bottom right | vive - .48 *** [ - .52 - .44 ] - 37.48 <.001

center - left | varjo - .01 [ - .03 .00 ] - 2.78 .122
center - right | varjo - .13 *** [ - .14 - .11 ] - 23.72 <.001
center - top | varjo - .03 *** [ - .04 - .01 ] - 5.50 <.001
center - bottom | varjo .02 * [ - .00 .03 ] 3.17 <.05
center - top left | varjo .00 [ - .02 .02 ] .06 1.00
center - top right | varjo - .17 *** [ - .19 - .15 ] -30.67 <.001
center - bottom left | varjo .04 *** [ .02 .05 ] 7.70 <.001
center - bottom right | varjo - .04 *** [ - .06 - .03 ] - 8.40 <.001

∗p < .05 ∗∗p < .01 ∗∗∗p < .001

A priori, we did not predict an interaction between device and order. However, given the significant
main effect of order in our analysis, we decided to perform a model comparison to test for the presence
of a Device×Order interaction, since this interaction could have notable impact on the interpretation
of our results. Of concern, this interaction between device and order could indicate that some aspect
of our experimental design influenced experimental outcomes, as well. The performance package in R
was used to compare models and produce a model performance score [288]. This score is calculated by
normalizing all fit indices of a model (i.e., Akaike Information Criterion or AIC, Bayesian Information
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Criterion or BIC, conditional and marginal R2, ICC, Root Mean Square Error of Approximation
or RMSE, and Bayes Factor or BF), taking their mean, and then returning a score from 0% to 100%.
Higher scores indicate better model performance.
Model comparison revealed the model with the interaction included performed no better than the

original model without the interaction, with both receiving performance scores of 50%. Because model
fit was not improved by including this interaction and because the Device×Order interaction reported
in this model was not significant, we opted not to include this interaction term in our final model.

Target It is well documented that in display-based eye trackers, data quality decreases as gaze ec-
centricity from the center of the screen increases. We can see this trend in our main effects of fixation
target position in Table 9.4, in which accuracy was significantly better at the center target compared to
all other fixation targets—except for the one positioned at the top (B = −.07, t = −12.98, p < 0.001).
While the main effects analysis reveals significant differences between target position conditions, it is
crucial to consider the potential interaction between target position and device type. Eye tracker preci-
sion is known to vary across the visual field, and these variations might differ between the two devices
under investigation. Therefore, interpreting the main effects without considering this interaction could
be misleading.

Device×Target Because these HMDs employ different solutions for eye tracking, there are a
number of reasons we can suspect that precision will vary between the two displays. For example, the
physical position of the eye tracking sensors within the display chassis are different. We provide the sta-
tistical results for our analysis of Device×Target interaction in Table 9.4. However, it may be easier for
the reader to interpret the interactions by observing the forest plot of these interaction effects in Fig-
ure9.7.
For the HTCVive Pro Eye, accuracy was significantly different between the center target and all

other fixation targets. Accuracy was better at the center fixation target compared to 6 of the targets.
And accuracy was worse at the center fixation target compared to two of the other targets: the top fixa-
tion target (B = .18, z = 17.20, p < .001) and the top right fixation target (B = .06, z = 5.31, p < .001).
For the Varjo XR-3, accuracy was significantly different between the center target and 5 of the other

fixation targets. Accuracy was better at the center fixation target compared to 4 of the targets. And
accuracy was worse at the center fixation target compared to one other fixation target: the bottom left
target (B = .04, z = 7.70, p < .001). There was no significant difference in accuracy between the center
fixation target and 3 of the other fixation targets: the left, bottom, and bottom left fixation targets.
From the size of coefficients produced by our analysis and from visual inspection of these coeffi-

cients in Figure9.7, it is apparent that accuracy varies more across the screen in the HTCVive Pro Eye
than it does for the Varjo XR-3. We can see this in the comparatively larger distances between fixation
targets and the center fixation target in the Vive Pro. From an applied perspective, developers should
consider that eye tracking accuracy will vary across the screen in this device. To facilitate tasks like gaze
interactions with virtual interfaces and correct interpretation of gaze behavior during visual search, it
may be beneficial to use larger areas of interest (AOIs) in this display. The Varjo XR-3 has compara-
tively smaller differences in accuracy across the screen–at least within the range of the screen that we
evaluated in this study. It will be beneficial to look at the Varjo XR-3’s eye tracker performance across a
wider span of the display’s field of view given its performance in this experiment.
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Figure 9.7: Forest plots depicting Device×Target interactions for accuracy (left) and for precision (right). For
precision data, we plot the mean ratios from our model for easier interpretation. All statistical comparisons are
made relative to the center fixation target. Significance is Bonferroni corrected for multiple comparisons.

Precision

The output of our GLMM for precision is reported in Table 9.5. To facilitate interpretation of model
estimates on the original scale of the response variable, estimates (B) from the Zero-Inflated Gamma
GLMMwith a log link function were exponentiated. These exponentiated coefficients represent the
multiplicative effects on the expected value for a one-unit increase in the corresponding predictor. As
such, in Table 9.5 estimates> 1 indicate that the second level of the categorical factor is associated with
larger position offsets (i.e., worse precision); coefficients< 1 indicate that the second level of the factor
is associated with smaller offsets (i.e., better precision) compared to the first level.
We report both the root mean squared of inter-sample distances (RMS-S2S or RMS) and the stan-

dard deviation (STD) of angular offsets for the both devices and for each of the fixation target positions
in these devices in Table 9.3.

Device We could not compare our measurements of precision against the manufacturer specifica-
tions for precision, since neither manufacturer provided reports on the precision of their eye trackers
in the device specifications. However, given the high sampling rate and comparatively better accu-
racy of the Varjo XR-3, we predicted better precision in this display. Our statistical analysis indicates
that RMS precision was significantly better in the Varjo XR-3 compared to the HTCVive Pro Eye
(B = .23, z = −195.90, p < .001). For precision, we report an RMS of .07◦ (STD=1.10◦) across all
fixation targets for the HTCVive Pro Eye and an RMS of 0.01◦ (STD=.62◦) across all fixation targets
for the Varjo XR-3. RMS precision for both devices is depicted in Figure 9.6.

Order We found a main effect of order, in which precision was significantly better in the second
block of trials than the first block of trials (B = .96, z = −3.47, p < 0.001). However, this effect was
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Table 9.5: Results of zero‐inflated Gamma regression model with log‐link are displayed for precision data.
Estimates represent the regression coefficients, CI is the confidence interval of the regression coefficient. Values
for Estimates< 1 indicate that the first level of the predictor in the comparison had a larger RMS precision offset
(i.e., lower precision) than the second factor. Values> 1 indicate that the second level of the predictor had a
larger RMS precision offset (i.e., lower precision). Interactions are the result of planned contrasts on the
estimated marginal means with Bonferroni correction..

Predictors Estimates CI z-value p-value Random Effects Variance

(Intercept) .03 *** [ .02 .03 ] -42.60 <.001 σ2 7.64
Device vive – varjo .12 *** [ .12 .13 ] -195.90 <.001 τId .16
Order first – second .96 *** [ .94 .98 ] -3.47 <.001 ICC .02

Target center – left 1.09 *** [ 1.05 1.14] 4.02 <.001 Model Fit

Target center – right .87 *** [ .83 .91 ] -6.31 <.001 Marginal R2 .120
Target center – top .78 *** [ .74 .81 ] -11.42 <.001 Conditional R2 .138
Target center – bottom .82 *** [ .78 .85 ] -9.07 <.001
Target center – top left .95 * [ .91 .99 ] -2.1 < .05
Target center – top right .75 *** [ .72 .78 ] -13.10 <.001
Target center – bottom left .93 ** [ .89 .97 ] -3.13 <.01
Target center – bottom right .90 *** [ .86 .94 ] -4.91 <.001

Interactions Estimates CI z-ratio p-value

Device×Target
center - left | vive - .01 [ - .12 .10 ] - .31 1.00
center - right | vive .25 *** [ .14 .36 ] 7.14 <.001
center - top | vive .46 *** [ .35 .57 ] 13.32 <.001
center - bottom | vive .36 *** [ .25 .47 ] 10.34 <.001
center - top left | vive .23 *** [ .12 .34 ] 6.59 <.001
center - top right | vive .58 *** [ .47 .69 ] 16.78 <.001
center - bottom left | vive .15 *** [ .04 .26 ] 4.45 <.001
center - bottom right | vive .12 * [ .01 .23 ] 3.48 <.05

center - left | varjo - .17 *** [ - .26 - .08 ] - 5.96 <.001
center - right | varjo .03 [ - .06 .12 ] 1.18 .960
center - top | varjo .05 [ - .04 .13 ] 1.64 .784
center - bottom | varjo .04 [ - .04 .13 ] 1.61 .801
center - top left | varjo - .13 *** [ - .22 - .04 ] - 4.53 <.001
center - top right | varjo .00 [ - .09 .09 ] .07 1.00
center - bottom left | varjo - .01 [ - .10 .08 ] - .49 1.00
center - bottom right | varjo .10 * [ .01 .19 ] 3.53 <.05

∗p < .05 ∗∗p < .01 ∗∗∗p < .001

quite small. This is corroborated by an RMS precision of .039◦ (STD = .93◦) in the first block of trials
and .033◦ (STD = .90◦) in the second block of trials, when we collapse across device and target.
Because there was a main effect of order, we again evaluated the effect of Device×Order interaction

through model comparison to ensure that this interaction did not impact the interpretation of our
main results with the performance package. Model comparison revealed that our original model had a
better performance score (100%) compared to the model with Device×Order interaction as a predic-
tor (0%). Therefore, we opted not to modify our original model to include Device×Order interaction.
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Target Just as accuracy can be expected to degrade with increasing eccentricity from the center of
a display based eye tracker, so can precision. We can see this in our significant main effects of fixation
target position in Table 9.5, in which precision was significantly better at the center target compared
to all other fixation targets—except for the one positioned at the left (B = −.07, t = −12.98, p <
0.001). However, to properly interpret the influence of fixation target position, we must analyze the
interaction between device and target.

Device×Target To better understand this main effect, we again evaluate the Device×Target inter-
action, since precision should vary based on screen position between the two devices. Table 9.3 reports
the RMS and STD precision values for each target. And the results of our statistical analyses for Target
as well as the Device×Target interaction are reported in Table 9.5. The interaction is then visualized
through forest plots to facilitate ease of interpretation in Figure 9.6.
For the HTCVive Pro Eye, precision was significantly better at the center target compared to 7 of

the other fixation targets. There was no significant difference between the center and left fixation target
in our assessment (B = .− 01, z = −.31, p = 1.00).
In contrast, for the Varjo XR-3 precision was only significantly different from 3 of the fixation tar-

gets. Precision was better at the center target than at the bottom right target (B = .10, z = 3.53, p <
.05). Precision was worse at the center fixation target compared to two of the other targets: the left fix-
ation target (B = −.17, z = −5.96, p < 001) and the top left fixation target (B = . − 13, z =
−4.53, p < .001). This outcome is interesting, because it provides an indication that precision did not
decrease with eccentricity within 20◦ of the center of the display (our sampled area for fixation targets)
in our assessment. This is an encouraging outcome for the Varjo XR-3. It is also impressive how close
to zero the precision measurements are for this device (See Table 9.3). Future research should consider
sampling a larger potion of the display’s field of view to determine if this pattern persists across the far-
ther extents of the display. In contrast, the precision values reported for the HTCVive Pro Eye in this
study may present issues for applications where very small eye movements are required. As mentioned
previously for accuracy, people who employ this eye tracker should carefully consider the size of AOIs
and other visual targets to ensure that gaze is tracked sufficiently.

Data Loss

Based on the criteria we established in the data preprocessing section (Section 9.2.2), we counted sam-
ples as invalid when either the left, the right, or the combined eye sample was marked False for the
HTCVive Pro Eye or Invalid for the Varjo XR-3. With this criteria, we measured 6.28% data loss
of eye tracking samples in the HTCVive Pro Eye and 6.10% data loss of eye tracking samples in the
Varjo XR-3.
We did not statistically analyze differences in eye tracking data loss between the HTCVive Pro Eye

and the Varjo XR-3 since the systems use quite different reporting mechanisms to convey the eye track-
ing status. Instead, in this section, we provide detailed descriptions of the different approaches em-
ployed by the two systems for reporting eye tracking states.
The HTCVive Pro Eye uses a boolean flag [True, False] to describe the tracking status of the left,

right, and combined eye data. The Varjo XR-3, in contrast, appears to use a more probabilistic ap-
proach for reporting eye tracking status. For combined eye data, the Varjo XR-3 uses a boolean flag
[Valid, Invalid] similar to what is employed by the HTCVive Pro Eye. However, Varjo’s eye tracking
SDK provides a total of four tracking states for the left and right eyes:
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• 0 – Invalid - Eye is not tracked and not visible (e.g., the eye is shut)
• 1 – Visible - Eye is visible but not reliably tracked (e.g., during a saccade or blink)
• 2 – Compensated - Eye is tracked but quality is compromised (e.g., the headset has moved after
calibration)

• 3 – Tracked - Eye is tracked

While the Varjo XR-3 provides some additional information about tracking states, neither of the
display systems evaluated in this research clearly explain how eye-tracking status is measured or de-
termined. In Table 9.6, we report the number of eye tracking samples as well as the percentage of eye
tracking samples that were assigned to each of the available tracking states provided by the respective
device’s SDK. The breakdown of the Varjo XR-3’s eye tracking states is particularly interesting, because
a large portion of samples were labeled as Compensated: 13.46% for the left eye and 14.08% for the right
eye.
By including this tracking state label, Varjo has indicated that eye tracking data is registered differ-

ently between the Tracked and Compensated states. This may also mean that eye tracking data is pro-
cessed differently (e.g., different weights may be applied to data from the left and right eyes when one
eye is Compensated for the calculation of the combined gaze vector or different filtering algorithms may
be applied to eye tracking data when in a Compensated state). It may be of interest for researchers who
conduct eye tracking research with the Varjo XR-3 to record the tracking states for eyes across trials to
better understand how their experimental outcomes are affected by intermediate tracking states. This
may be important to consider since eye tracking accuracy and precision are quite sensitive to changes in
filtering methods [294, 335]. It is highly probably that the HTCVive Pro Eye also employs some form
of compensation algorithm to stabilize eye tracking data, which is a common practice in commercial
eye tracked devices. Unfortunately, this information is not accessible through the eye tracking states
provided by HTC’s SRanipal SDK.
We believe it is also of interest to note eye tracking states and data loss information that was collected

during fixation trials. In theory, eye tracking data should be relatively stable for this subset of samples,
since participants were required to maintain fixations near the center of the display screens. When we
looked at data loss that was incurred during fixation trials, when no samples were removed due to pre-
processing, we measured 1.02% data loss in the HTCVive Pro Eye and 1.01% data loss in the Varjo XR-
3. Curiously, in the Varjo XR-3 we measured 39.86% and 41.70% of data samples were labeled as Com-
pensated. In future work, it will be beneficial to evaluate how data quality differs between Tracked and
Compensated eye tracking samples.

9.3.7 Discussion
This research investigated eye tracking data quality in twoMR displays: the Varjo XR-3 and the HTC
Vive Pro Eye. We conducted this evaluation to better understand the capabilities and limitations of
these eye-tracking systems, since both were candidates for the deployment of our vision simulation.
As expected, angular offsets in the Varjo XR-3 were smaller than offsets in the HTCVive Pro Eye.

Our work is the first to evaluate eye tracking data in the Varjo XR-3. And it is one of the first controlled
eye tracking data quality assessments conducted for any eye tracked Varjo display.
In theory, the work conducted by Keshava et al. [229] may provide useful insights for contextual-

izing our current investigation. The authors of this study evaluated data quality measures, including
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Table 9.6: Eye tracking states and data loss reported by the HTC Vive Pro Eye and the Varjo XR‐3 during the
experimental session

HTCVive Pro Eye Varjo XR3

Total True False Total Valid/Tracked Compensated Visible Invalid

Samples
Combo 359, 070 336, 515 22, 555 586, 527 534, 603 - - 34, 724
Left 359, 070 333, 656 25, 414 586, 527 451, 497 76, 608 1, 497 39, 725
Right 359, 070 334, 745 24, 325 586, 527 446, 937 80, 135 1, 781 40, 474

Percent
Combo 100 % 93.72 % 6.28 % 100 % 93.90 % - - 6.10 %
Left 100 % 92.92 % 7.08 % 100 % 79.30 % 13.46 % .26 % 6.98 %
Right 100 % 93.22 % 6.77 % 100 % 78.50 % 14.08 % .31 % 7.11 %

accuracy and precision, in the HTCVive Pro Eye and the Varjo VR-2. Unfortunately, this work was
featured in a short conference abstract that omits important information about their experimental de-
sign that is imperative for correctly interpreting their experimental results. An interesting outcome
from this work is that they reported better average accuracy in the HTCVive Pro (1.28◦ horizontal
offset, .89◦ vertical offset) than the Varjo VR-2 (3.29◦horizontal offset, 4.93◦ vertical offset) [229]. In
a recent Bachelor’s thesis, Heikkilä et al. [173] measured the accuracy and precision of the eye tracker
in the Varjo Aero. Although this work was not peer-reviewed, the authors provide more details about
their experimental protocol and analysis. Their results for accuracy are similar to what we found in the
current work. They reported average accuracy of .85◦ (horizontal) and 1.17◦ (vertical) in the Varjo Aero
after removing the first 500ms of fixation trial data in their experiment.
For the HTCVive Pro Eye, our accuracy measurements were notably larger than the range of ex-

pected accuracy values provided by HTC: 0.5 − 1.1◦. This discrepancy in performance, at least for
accuracy, may be expected based on previous data quality research investigations conducted with the
HTCVive Pro Eye. Schuetz et al. [413] and Sipatchin et al. [430], who conducted comprehensive
investigations of eye tracking accuracy and precision in the HTCVive Pro Eye, provide additional
context for our study. The study conducted by Sipatchin et al. [430] measured unfiltered gaze data,
while the study conducted by Schuetz et al. [413] measured filtered gaze data. Evaluations of unfil-
tered gaze data are important, because they can evaluate the performance and noise present in the eye
tracker itself [120, 294, 436]. Filtering algorithms can introduce unanticipated biases in gaze data (e.g.,
Niehorster et al. [336]). However, unfiltered raw data are not always accessible, since eye tracking man-
ufacturers often apply unspecified filters. In this context, understanding the performance of the entire
end-to-end system, including the filtered data is important.
Sipatchin et al. [430] measured large errors in gaze positions relative to fixation target positions, with

an average accuracy of 4.16◦ across all fixation targets. This result is unsurprising given that they evalu-
ated unfiltered eye tracking data, performed minimal data preprocessing, and that they evaluated fixa-
tion targets across a wide FOV (54◦ × 54◦). When they constrained their analysis to a narrower subset
of fixation targets (the center horizontal row) in their post-hoc analyses, they reported a better average
accuracy of 2.26◦.
The vast majority of data quality assessments, both formal and informal assessments, conducted
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with the HTCVive Pro Eye have evaluated filtered eye tracking data. The current work employed fil-
tered eye tracking data, as does the investigation conducted by Schuetz et al. [413]. Schuetz et al. [413]
conducted a data quality assessment with filtered eye tracking data in the HTCVive Pro Eye with fixa-
tion targets that spanned 30◦ × 30◦. They reported a mean accuracy of 1.22◦ before data processing and
a mean accuracy of 1.10◦ across participants after data processing. When they constrained their calcula-
tions to only include fixation targets that fell within the inner 20◦ of FOV, they found a mean accuracy
of 0.97◦.
A number of informal eye tracking data quality assessments have also been conducted in the HTC

Vive Pro Eye. Adhanom et al. [25] and Sidenmark et al. [424] measured average accuracies of 1.49◦
and 1.23◦, respectively, in data quality assessments conducted usingGazeMetrcis [25], an eye tracking
validation tool. In a short conference abstract, Keshava et al. [229] reported accuracies of 1.28◦ for hor-
izontal gaze offsets and .89◦ for vertical gaze offsets. Unfortunately, these documents failed to report
important information about their experimental design (e.g., the extent of the visual field assessed, the
size and shape of fixation targets) and data processing, so it is difficult to contextualize their results.
Much like this prior research on eye tracking data quality, our own work is not without limitations.

For example, we only assessed data quality to fixation targets against a dark background. The amount
of light provided by the display can impact eye tracking data quality, because the pupil becomes more
difficult to track as it shrinks in brightly illuminated environments. For future data quality assessments,
we suggest evaluating accuracy and precision against multiple backgrounds. Another limitation of our
work with that we naively relied on the tools automatic (and semi-automatic) interpupillary distance
(IPD) adjustment tools provided by the two displays. Because the IPD adjustment tools provided by
these displays rely on eye tracking data to perform this adjustment, they may be prone to bias and noise
just like any other eye tracking measure. To ensure that participant IPDs are correctly accounted for
in the displays, we suggest manual IPD adjustment. It may also be of interest for future researchers
to measure the discrepancies between these automatic IPD adjustments and participants actual IPDs,
which can be measured via pupillometer.
Our investigation into data loss reveals another issue with interpreting eye tracking data in com-

mercial devices. Both the Varjo XR-3 and HTCVive Pro provide information about tracking states
through their SDK. However, it is unclear how eye tracking status is determined for either device. We
illustrate this issue in our discussion of the different tracking status labels provided by the two devices.
Our research highlights the importance of recording eye tracking states beyond instances of complete
data loss for more accurate interpretation of eye tracking data and gaze behavior.

FutureWork - Latency For gaze-contingent rendering applications, another data quality mea-
sure is of great importance: latency. A recent data quality assessment conducted by Sipatchin et al. [430]
on commodity-level HMDs suggests that system latency remains a primary concern for the develop-
ment of gaze contingent rendering applications—especially for applications that manipulate images
near the fovea. The simulation of central vision loss is particularly challenging since intrasaccadic per-
ception can occur [136], which results in a misalignment between one’s simulated visual field and their
actual fovea. Misalignment could allow “peeking” at the percepts that are supposed to be masked. To
prevent this effect, a low vision simulation that attempts to mask central vision should have an over-
all latency of 25 ms or less; higher latencies can be tolerated for peripheral field loss[406]. This overall
latency is dependent on the time it takes for a system to register an eye movement event, as well as the
displays’ update rate. To better understand the impact of eye tracking data quality on gaze-contingent
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rendering, we planned to conduct latency assessments for our eye-tracked head-mounted displays in
Section 9. For this latency assessment, we wanted to include latency evaluations of the HMDs with and
without the vision simulation, which would allow us to establish the baseline performance of the sys-
tem and to measure any computational overhead introduced by our simulation. To ensure a focused
investigation within the allotted time frame for the dissertation, the evaluation of system latency was
deferred for future research.

9.4 Summary

In this chapter, we presented the framework for our vision simulation in technical detail, and we con-
ducted a data quality assessment across two eye-tracked HMDs to better understand the capabilities
and limitations of these devices so that we can design more effective eye tracking applications, like our
gaze contingent vision simulation.
Our vision simulation has a wide range of applications beyond the current work, as well. For exam-

ple, vision simulations can be useful design tools. By allowing developers with normal vision to expe-
rience vision impairments firsthand, they may better consider how design decisions affect users with
vision impairments. They may also be useful in clinical settings to allow doctors and family members
of patients to better understand the experience of a patient with severe vision impairment. However,
there are inherent differences between the experiences felt by people with real versus simulated vision
loss [469]. Simulations provide useful control and study of specific symptoms of vision loss. But they
cannot recreate the social and environmental experiences of patients [409, 469]—nor can they recreate
the adaptive behaviors that individuals with vision loss develop over time.
Our data quality assessment then revealed lower data quality for the HTCVive Pro Eye compared to

the Varjo XR-3. However, this finding doesn’t negate the potential utility of the Vive Pro Eye. Many
eye tracking applications can be—and have been—effectively implemented for this device. It is impor-
tant to remember that we can often optimize the design of eye tracking application to function effec-
tively within the capabilities of the eye tracker.
One example of this can be found in the work by Schuetz et al. [415]. In this work, the authors em-

ployed a psychophysics-inspired model to determine the optimal target size of UI elements for reliable
gaze selection based on eye tracking data quality measures. Such research efforts, which encompass a
range of complexities from simple to highly sophisticated methods, are not uncommon in eye track-
ing research. Better yet, the eye tracking data quality assessment from the current work, in conjunction
with those collected in prior research, can inform decisions about optimal design parameters for eye-
tracked applications.
For instance, we can use this information to determine the appropriate size for a simulated central

scotoma. Given that the accuracy and precision of eye trackers can vary depending on the position
of someone’s gaze relative to the center of the screen, we suggest using larger scotomas (blind spots)
in vision simulations when eye tracking accuracy and precision are poor. To determine the size of the
scomota, One may consider using a similar approach to what eye tracking researchers have already em-
ployed for determining the size of targets for reliable gaze selection in VR [415], or for determining the
size of AOIs for behavioral research [348, 480]. The data quality assessments conducted in this study,
along with those reported by other researchers, will be instrumental in guiding the selection of the eye
tracking device for the final dissertation experiment. This is particularly important because the HTC
Vive Pro Eye will be used to deploy the vision simulation for this study. The primary factor influenc-
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ing this decision was the Varjo XR-3’s software development kit (SDK). Unfortunately, the Varjo SDK
currently restricts the implementation of complex post-processing operations required by our applica-
tion. Consequently, despite its superior data quality, the Varjo XR-3 was not a feasible option for the
vision simulation and our final experiment.
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Also note that invariably when we design some-
thing that can be used by those with disabilities, we
often make it better for everyone.

DonNorman

10 Distance Perception, Vision Loss, & The Promise of Styl-
ized Graphics

In this chapter, we describe our investigation into the influence of simulated visual field loss (VFL) on
distance perception. For this, we employ our vision simulation in order to tightly control the extent of
visual field loss for a within-subjects experiment in which individuals assess the distance to targets in
space with normal vision, with central vision loss, and with peripheral vision loss. In addition, partici-
pants will be shown targets that are presented with either realistic, low contrast cast shadow connecting
cues or non-photorealistic, high-contrast graphical elements along the ground. Through this investi-
gation, we hope to generalize the results of our prior research on spatial perception and the influence
of non-photorealistic graphics in HMDs to a more inclusive audience. The results of this research may
have implications for both accessibility and the hardware design of immersive HMDs.

10.1 Motivation and Goals

The different areas of a person’s visual field correspond to anatomically distinct regions that can be
defined relative to the center of vision based on notable drop-offs in visual resolution. These regions
are the fovea, the parafovea, and the periphery [375]. As eccentricity from the center of one’s vision
increases, visual acuity is reduced. The fovea is the most central region and it encompasses approxi-
mately 1–2◦ of the visual field [375]. It is responsible for providing sharp visual details in vision. The
parafoveal region then encompasses approximately 5–8◦ visual angle from fixation (or eccentricity) [448].
The fovea and parafoveal regions together encompass central vision [259, 448]. The area of vision be-
yond the parafovea in which the reduction in visual acuity is most severe is commonly referred to as
peripheral vision [259, 448].
The most common eye disease that results in loss of central vision is age-related macular degenera-

tion (AMD). Near the onset of this disease, patients often experience scotomas with diameters smaller
than 10◦ or less [450]. However, the extent of vision loss increases as the disease progresses. Often, cen-
tral scotomas in patients with advanced AMD have diameters ranging between 10−20◦ [160, 168, 412].
In a study of 24 AMD patients, Guez et al. [160] reported a mean diameter of 10.3◦. In a study of 21
AMD patients, Hassan et al. [168] reported a mean diameter of 14.8◦. Schuchard et al. [412] evaluated
a larger cohort of 255 AMD patients and reported median width and height of scotomas as 21.8◦ and
17.9◦, respectively. In this work, we simulate a central scotoma with a 20◦ diameter.
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10.2 The Impact of Vision Loss on Distance Perception

Central and peripheral vision provide different, complementary information about an environment
as well as the objects and events that occur within it. As such, it is perhaps unsurprising that visual
field impairments can affect people in different ways, depending on what part of their visual field is af-
fected [116]. For example, patients with glaucoma and patients with age-related macular degeneration
(AMD) report both common and distinct disabilities in self-report assessments of instrumental activ-
ities of daily living assessments [181] and in quality of life assessments [116]. In one report, Evans et
al. [116] found that patients with AMDmore frequently reported issues with their ability to perform
physical day-to-day tasks and driving than did patients with glaucoma. They argue that one reason for
this difference is that central vision remains intact for most patients with glaucoma.
At present, there is evidence that certain low vision conditions have a negative impact on tasks that

require depth perception (e.g., difficulties with mobility [249], hazard detection[289], driving [365]).
However, the relationship between visual field loss type and depth perception remains unclear.

10.2.1 Peripheral Vision Loss
Previous distance perception research in VRHMDs has shown that the reduced peripheral field of
view (FoV), when combined with the added head weight of these displays, contributes to distance
underestimation in virtual environments [64, 126, 211, 303, 501]. However, artificially restricting
one’s field of view when looking at real environments does not necessarily cause distance underesti-
mation [95]. Further, the field of view restrictions in VRHMD studies are qualitatively different from
than the peripheral vision loss (PVL) described by people with low vision. FoV restrictions in the afore-
mentioned VR experiments completely block light at the periphery. However, low vision patients with
PVL typically retain some light sensitivity even when functional vision at the periphery has been im-
paired [87]. Retaining light sensitivity in peripheral vision appears important for spatial perception.
Evidence for this can be found in both VR display research [212, 214, 272, 273] and in research with
low vision patients [238, 431].
For example, research in VR has found that depth compression in HMDs can be mitigated by adding

light stimulation to the periphery [212, 214, 272] or by introducing low resolution graphics at the pe-
riphery [273]. Jones et al. [212, 214] reported this phenomenon with a constant white light added to
the viewer’s far peripheral vision. Li et al. [272] then demonstrated that adding a black frame, which
completely blocked the participant’s peripheral vision, decreased distance judgements. However, adding
a solid white or middle gray frame improved distance judgments. In followup work, Li et al. [273] then
demonstrated that applying a pixelated peripheral treatment could also improve distance judgments in
VR.
Prior research on depth perception with low vision patients investigating the influence of periph-

eral vision loss (PVL) on depth perception has been more equivocal. Kotecha et al. [238] found that,
compared to controls with normal vision, people with PVL are slower and make more tentative move-
ments when reaching to targets; however, people with PVL exhibited few differences in grasp-posture
and grip execution compared to controls. Glaucoma patients also exhibit more accurate and efficient
movements in comparison to individuals with central vision loss [356, 470]. Although Fortenbaugh
et al. [128] noted distance compression for patients with glaucoma in their research, their work suffers
from a number of methodological problems that cast doubt on their statistical analyses and conclu-
sions.
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Patients with glaucoma express difficulties performing a range of spatial tasks that require accurate
depth perception (e.g., walking, driving, obstacle avoidance) [20, 330]. However, prior investigations
on the influence of simulated and real PVL have not provided a clear understanding of the relationship
between PVL and depth perception. It is possible that depth perception errors in these spatial tasks are
caused by an impaired ability to detect objects of interest and hazards—rather than an impaired abil-
ity to correctly perceive the distance to the objects [264, 473]. In our experiment, simulated peripheral
vision will be rendered as a severe reduction in visual acuity—not an opacity—to better represent the
vision loss experienced by individuals with PVL. In the current work, we predict that people’s depth
judgements to targets will be similar between simulated peripheral vision loss and control viewing con-
ditions (H1). Our prediction is motivated by emerging evidence in prior research that the retention of
light sensitivity in the periphery is more important than intact visual function for depth judgements.

10.2.2 Central Vision Loss
Impaired central vision makes distinguishing fine details about objects within an environment difficult,
since central vision provides the sharpest visual acuity.It is likely that the inability to distinguish details
about an object and its nearby surroundings may have an adverse effect on depth perception judge-
ments to that objects. Evidence in support of this idea can be found in prior research on reaching and
grasping behaviors in people with central vision loss (CVL).
For example, Verghese et al. [482] found that patients with CVL performed worse at a peg-placement

task than age-matched controls. Further, among CVL patients, those patients with central scotomas
that interfered with stereopsis performed even worse. Timberlake et al. [470] similarly reported that
reach-to-grasp movements were less efficient and reaction times were slower for individuals with AMD
when compared to age-matched controls. In comparisons of reaching and grasping behaviors between
low vision patients with PVL and CVL, both Sivak et al. [431] and Pardhan et al. [356] found that cen-
tral vision loss had a significantly greater negative impact on task performance. Although the results of
research investigating the influence of PVL on depth perception is muddled, research on the influence
of central vision loss (CVL) is more clear, especially for depth judgements at near distances (< 2m).
In the current work, we hypothesize that central vision loss will primarily influence distance judg-

ments through an interaction effect with shadow contrast. Specifically, we predict that central vision
loss will lead to a greater overestimation of distance for targets presented with low-contrast shadows
compared to high-contrast shadows (H3). This is because impaired central vision may hinder the abil-
ity to detect and utilize subtle depth cues provided through surface contact, such as faint shadows, for
accurate distance perception. Consistent with previous research, including the 5th experiment of this
dissertation [4], failure to perceive these cues is expected to result in distance overestimation [314, 332].

10.3 Study 8 - Distance Perceptionwith Simulated Vision Loss

Previously in this dissertation, we evaluated the influence of shadow-like elements along the ground for
people’s depth judgements to floating and grounded targets in ARHMDs. In this work, we found that
the presence of cast shadows mitigated distance compression in AR for both grounded and floating
targets in participants with normal vision. We also found that the appearance of a shadow could be
manipulated to unrealistic extents and still preserve its role as a cue for depth perception. Our research
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indicates that the visibility of a cast shadow is more important than its realism for enhancing spatial
perception inMR displays.
This outcome is especially promising for the development of applications for optical see-through

AR displays, since dark color values in these displays are highly transparent. As we have seen, con-
necting cues that attach objects in space to nearby surfaces—like cast shadows [102, 135, 175, 333]
and nested contact relations between adjoining surfaces [314, 315, 383]—play an important role in
depth perception for disambiguating the positions of objects in space. However, as shown by Rand et
al. [383], if the element that connects an object to nearby surfaces is not visible, then the utility of that
element is lost.
Over a series of experiments, Rand and colleagues studied distance perception in normally sighted

individuals when global reductions in visual acuity were applied through blur goggles [383, 384]. They
found that people’s distance judgments to targets placed on the ground were accurate even when vi-
sual acuity was artificially degraded [384]; however, depth perception judgements became less accurate
when the vertical position of a target [383] and when the connection between a target object and the
visual horizon were manipulated [384]. In an especially relevant experiment to the current work, Rand
et al. [383] compared distance judgments made to targets presented on visible stands (detectable stands)
against judgments made to targets that were presented on stands with sufficiently low contrast relative
to their backgrounds that they could not be seen through the blur goggles (undetectable stands). They
found that people’s distance judgements to targets in the undetectable stand condition were overesti-
mated relative to judgments made to targets in the detectable stand condition. This phenomenon of
overestimation is similar to what occurs in the total absence of surface contact information (e.g., no cast
shadow) [314, 333, 352, 397].
It is possible, then, that an inability to detect important spatial information within an environment

is a contributing factor to the depth perception difficulties experienced by individuals with low vision.
In particular, depth perception errors may occur when scotomas (blind spots within the visual field)
interfere with an individual’s ability to detect important information about an object of interest, its en-
vironment, and the visual information (e.g., cast shadow) that connects an object to its environment.
As such, in our proposed work, we wish to evaluate how central visual field loss (e.g., age related macu-
lar degeneration, diabetic retinopathy) and peripheral visual field loss (e.g., glaucoma, retinitis pigmen-
tosa), influence people’s depth judgements. For this assessment, we employ our low vision simulation
for experimental control to draw comparisons between depth judgments made under central field loss
(CVL), peripheral field loss (PVL), and normal vision conditions. Participants in our study will eval-
uate the influence of low and high contrast connecting cues, like the cast shadows from our prior ex-
periments. Our research will provide insights into how visual field loss affects distance perception, and
it will provide actionable guidelines for improving distance perception and visual accessibility in MR
displays for people with low vision.

Hypotheses

More formally, our three hypotheses about the relationship between visual field loss, depth perception,
and connecting cues are as follows:
H1. People with central vision loss (CVL) will underestimate depth judgement more in action space

than people with normal vision
H2. Depth judgments to targets with low-contrast connecting cues will be overestimated relative to

depth judgments made to targets with high-contrast connecting cues for people with central vision loss.
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H3. People with central vision loss will have longer response times than people with peripheral vi-
sion loss and no vision loss.

10.3.1 Materials
We employed the HTCVive Pro Eye head-mounted display for our investigation. Additional infor-
mation about this display and its software dependencies can be found in the previous chapter (Sec-
tion 9.3.1). Although we found that the Varjo XR-3 had significantly better accuracy and precision
compared to the HTCVive Pro in our data quality assessment, we were unable to use the Varjo XR-3
for our vision simulation, because the Varjo SDK prevents developers from interjecting complex post-
processing operations into the graphics pipeline*.

Vision Simulation In our eye tracking data quality assessment with the HTCVive Pro Eye, we
found an average accuracy of 1.77◦ and precision measurements of .08◦ (RMS-S2S) and 1.10◦ (STD)
(Section 9.3). Another data quality assessment conducted by Sipatchin et al. [430], which sampled a
much larger extent of this HMD’s FOV (54◦ × 54◦), reported an average accuracy of 4.16◦. Because we
do not artificially restrict people’s head and eye movements in our experiment, participants are allowed
to move their eyes anywhere within the HMD’s FOV. Considering the limitations of the eye tracker,
we realized that it was necessary to use a central scotoma that extended beyond the parafoveal region
(8◦ eccentricity). By rendering a scotoma beyond this region, we can minimize the risk of participants
‘peaking through’ the scotoma when moderate eye tracking errors occur, since the fovea and parafoveal
regions of vision would still remain occluded. Rendering a central scotoma with a 20◦ diameter allowed
us to meet both the theoretical and technical demands of our study, since a 20◦ eccentricity is represen-
tative of the vision loss experienced by a patient with advanced AMD (Section 10.1).
Our simulation rendered both central and peripheral vision loss relative to this boarder at 20◦ ec-

centricity. For the center vision loss condition, the center most 20◦ of a participant’s visual field was
obscured; for the peripheral vision loss condition, the visual field beyond 20◦ was obscured.
Our vision simulation employed an image pyramid with 7 levels. The resulting image pyramid for

the HTCVive Pro Eye had a resolution of 1400 × 1600 pixels per eye for the top layer and a resolution
of 22 × 25 pixel for the bottom layer. A separable Gaussian filter with a 3 × 3 kernel (σ = 0.8) was
applied to each downsampled layer. The area of the field of view that was affected by downsampling
was dictated by a radial gradient area. The radius of the circle was set to match 20 degrees eccentricity
from the center of the screen. Once eye tracking was enabled, the center of the circle was aligned to the
center gaze position. Figure 10.1 depicts the three resulting vision loss conditions: no vision loss (left),
center vision loss (center), and peripheral vision loss (right).

Environments The experiment was conducted in a 7.3×8.5×3.7m room that provided a 7.3m lin-
ear distance forward for blind walking. Two virtual environments were created for the experiment: one
for vision simulation adaptation and one for the actual experiment. The adaptation environment re-
sembled the interior of a café (Figure 10.2); the experiment environment resembled an outdoor garden
(Figure 10.1). Both environments were rendered with detailed textures, and thematically appropriate
3d models were strewn across both environments.

*Varjo Technologies Oy (2024). https://developer.varjo.com/docs/get-started/Post-processing
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Figure 10.1: Images captures from SteamVR’s ‘VR view’ of the simulated vision loss conditions experienced by
participants: no vision loss (left), center vision loss (center), peripheral vision loss (right). The floating cube target
is shown is a low contrast connecting cue (a cast shadow)

10.3.2 Participants
Twenty-four individuals volunteered for this experiment in exchange for 10 USD and approximately 45
minutes of their time. The average age was 28.2± 4.4 years (Min: 20, Max: 38). Fourteen volunteers
were female and ten were male. Six participants wore glasses and two wore contact lenses. Our methods
were approved by the local institutional review board, and written consent was obtained from volun-
teers prior to participation.
We recruited 24 participants because we needed our participant count to be a multiple of 6 to bal-

ance our within-subjects experimental factors perfectly (See Design & Procedure). Prior research has
demonstrated that data collected from 10 [205, 281] to 23 [232] participants is sufficiently powered to
detect differences in distance judgements made through blind walking, in which distance perception is
assessed by observers walking without vision to previously viewed targets. Further, in our prior distance
perception experiments, we were able to detect differences with 24 participants using verbal report,
which is a more variable and less accurate distance measure [13, 283].

10.3.3 Design
To address our hypotheses, we designed an experiment with a 3 (visual field loss) × 2 (shadow shading)
× 4 (target distance) within-subjects factorial design with repeated measures. All conditions were pre-
sented twice to every participant, and distance judgments were obtained through blind walking [281,
283]. The three visual field loss conditions included: a peripheral vision loss (PVL) condition, a cen-
tral vision loss (CVL) condition, and a control condition with no vision loss. The size of the scotomas
used in this study were based partially on the eccentricities defined by central and peripheral vision, as
discussed in Section 10.2 and partially on the data quality limitations of the HTCVive Pro Eye’s eye
tracker 9.3. Central and peripheral scotomas corresponded to areas inside and outside of 20◦ eccen-
tricity, respectively. Scotomas were rendered as low resolution blur fields rather than as pure opacities,
since this provides a more accurate representation of vision impairments [87, 124, 503].
A virtual cube was presented at four distances from the viewer: 2m, 2.5m, 3.0m, & 3.5m. To im-
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Figure 10.2: The virtual environment used for the
adaptation phase of the experiment

Figure 10.3: The low contrast (left) and high
contrast (right) drop shadow connecting cues.

prove the generalizability of our experimental results, the cube was rotated randomly between 0 and
45◦, horizontally [2, 135]. The virtual cube, depicted in Figure 10.3, measured 20cm in diameter, and it
was rendered with a middle gray RGB color value of 128. Targets were positioned above the ground at
0.2m, and they were rendered with one of two shading conditions for connecting cues: realistic (dark,
low-contrast) shadow or stylized (light, high-contrast) highlight along the ground (Figure 10.3). These
two conditions were motivated by the prior research of this dissertation. Connecting cues were ren-
dered immediately beneath each target during assessment.
The experiment was blocked by visual field loss condition, and the order in which visual field loss

conditions were experienced was counterbalanced across participants. All other factors were pseudo-
randomized within each block so that a participant views each unique combination once before ex-
periencing the same combination again. Each participant completed a total of 48 trials during the ex-
periment. with 24 participants, a total of 1, 152 trials was collected overall. For each participant, the
experiment took approximately 45 minutes to complete.
The primary outcome measure for task performance in this experiment was distance judgment.

However, we also report response time as a secondary outcome measure to better explain performance
differences and the influence of scotomas on distance judgements. Response time is important when
evaluating the influence of vision impairment on behavior, since often individuals with vision impair-
ments are able to complete tasks—but at a slower rate and with more error [10, 181, 238]. Time may
also be useful for understanding the difficulty or cognitive load of a task [38, 483].

10.3.4 Procedure
Upon arrival, participants were given a description of the experiment, an informed consent form, a
proof of payment form, and monetary compensation for volunteering to participate in the study. Par-
ticipants were outfitted with the eye tracked head-mounted display (the HTCVive Pro Eye), and they
performed the device’s native 5 point eye tracking calibration. The experiment was blocked by vision
condition, so the same procedure was repeated for each vision condition.
First, the participant was directed to the center of the room as the researcher launched the applica-

tion for the adaptation phase of the experiment. During the adaptation phase, they were exposed to
one of the three vision loss conditions (none, center, peripheral).
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Adaptation Phase This adaptation phase served an important purpose: it allowed participants
to familiarize themselves with the altered sensory input associated with the vision loss conditions. A
person’s perception of environmental scale—their ability to recover absolute distances and sizes in an
environment [90]—is closely linked to their prior experiences and interactions with their environment.
In virtual environments, there is evidence that a generalized rescaling of space occurs when appropri-
ate perceptual-motor feedback is provided [225, 226, 319]. Most frequently, this feedback is provided
through locomotion [3, 319]. Adaptations from walking interactions happen quickly. For example,
two experiments by Kelly et al. [225, 226] demonstrated calibration effects during exposure times that
ranged between approximately 2 and 3 minutes. In addition, calibration effects and the resulting rescal-
ing of perceived space from walking interactions are robust and can transfer across different virtual
environments [426].
An image of the virtual environment used for the adaptation phase can be seen in Figure 10.2. The

participant was asked to explore and walk around this virtual environment for a minimum of 2 min-
utes, within the area indicated by the blue carpet, which corresponded to a cleared tracking space in the
physical world. This adaptation phase was provided so that participants could update their understand-
ing of environment scale, given the different simulated vision impairments. It was also included to help
mitigate any novelty effects incurred during initial exposure to the simulated vision loss. A minimum
interval of 2 minutes was chosen because we believed this amount of time would be sufficient for recali-
bration. It was also chosen to minimize participant fatigue and to encourage participant compliance by
keeping the total time required for the experiment under 45 minutes. Because we employed a within-
subjects experimental design, it was necessary to use a separate virtual environment for the adaptation
phase to prevent participants from receiving feedback about their blind walking performance between
the experimental blocks.

Experiment Phase Following the adaptation phase of the first experimental block, the participant
completed a short, guided practice walk with their eyes closed, and they were guided in a backwards,
circuitous route to the designated starting position for the subsequent test trials. The starting point
was immediately next to a wall in the physical room. To prevent motor feedback from walking to the
same starting point, the participant was again guided back to the starting point without vision and via
backwards walking through a circuitous route at the end of each trial. Backwards walking was also con-
ducted to avoid putting twisting strain on the HMD’s tethered cable over numerous experimental tri-
als.
For the testing phase, participants were told that target objects would appear at various distances and

that the participant needed to walk to where they believed the target was positioned in space. At the
start of each trial, participants were allowed to view the target for as long as necessary. They verbally
indicated to the researcher when they were ready to begin the blind walking trial. Once the screen of
the HMDwent black, the participant initiated the blind walking trial. Once the participant finished
their blind walk, the researcher guided the participant back to the starting point, again via a backwards,
circuitous walk. The participant was given no feedback on their performance during the experiment.
The researcher used a wireless mouse click to advance the experiment. The start of the experiment,

the start of an experimental trial, the start of the blind walking phase, and the end of an experimen-
tal trial were all advanced using a single mouse click. An audio cue was provided for each mouse click
event to help avoid experimenter error (e.g., double clicks). At each mouse click event, position, perfor-
mance, and time stamp data was collected for later analysis.
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Figure 10.4: Data distributions for distance judgements as measured via blind walking (left) and for response time
measurements (right) for the distance estimation experiment. The right tail of the response time (RT) distribution
has been clipped at 60s to improve plot visibility. This distribution has a maximum value of 122s.

Within an experimental block, participants completed 16 trials. The same process was then repeated
for all 3 experimental blocks.

10.3.5 Data Analysis
We statistically analyzed two measures in this report: distance judgements and response time. Distance
judgements correspond to the actual distance walked by the participant for each trial. Blind walking
distances were calculated as the Euclidean distance between the participants start and end positions,
which were extracted from SteamVR’s position tracking system via two SteamVR Base Stations (v2.0)
in the corners of the room. Blind walking distances are reported in meters. Response times corre-
sponded to the interval of time between when the target was presented to the user and when the user
verbally indicated that they were ready to make a distance judgement through blind walking. Response
times are reported in seconds.
A grand total of 1,152 trials were completed across all 24 participants, with each participant con-

tributing data from 48 blind walking trials. Data from 13 trials (1.1% of the total data) were lost due
to experimenter errors (e.g., prematurely exiting experiment application, accidentally double-clicking
the mouse when progressing to the next part of a trial). As such, 1139 datapoints were evaluated in the
final analyses.
To investigate the influence of our experimental factors, we analyzed people’s responses with a mixed

model approach. Mixed models are a form of generalized regression techniques that can account for
both between-participant variability (i.e., the variability between different levels of categorical predic-
tors across participants) and within-participant variability (i.e., the variability within each participant
across conditions) in repeated measures research in which data are hierarchical, since they are collected
under different conditions and nested within each study participant [386]. By employing statistical
techniques that account for hierarchical data, effect size estimates and standard errors remain undis-
torted, and meaningful variance that may be overlooked when using aggregation is retained [351, 504].
We performed our statistical analyses using R version 4.3.2 [125]. Mixed models were specified using

the lmer package [40]. Hypotheses were addressed through pairwise comparisons using the emmeans
package. To interpret interactions between categorical factors, we conducted planned contrasts using
estimated marginal means. To evaluate the effect of a continuous variable at different levels of categori-
cal factors (i.e., the interaction between continuous and categorical factors), we calculated simple slopes
through the emtrends function.
Satterthwaite approximation via the lmerTest package [250] was employed to calculate significance

levels. Although Type I errors are somewhat reduced in hierarchical models compared to traditional
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omnibus tests [159], they are not completely avoided [306]. Inflated type I errors can still emerge in
the presence of complex covariance structures, small sample sizes, multiple comparisons, and imbal-
anced experimental designs [192, 291, 323, 407]. Because we conduct a confirmatory study with several
pre-specified hypotheses analyzed through multiple pairwise comparisons in this study, we adjust sig-
nificance levels for multiple comparisons with Bonferroni correction in our analyses [44, 323].

Distance Judgements

To answer our research questions on how depth perception judgements vary with visual field loss and
the visibility of connecting cues, we used a linear mixed-effects model (LMM). For our LMM, we used
the lmer function from the lme4 package [40].
Our sampled distance judgement data was non-normal, as exhibited by a slight positive skew and a

peaked distribution (See Figure 10.4 (left)). This was verified via Shapiro-Wilk test (W=0.958, p<0.001)
and QQ plot inspection. However, because the population’s distance judgement errors should have a
Gaussian distribution, we assumed that the underlying distribution of distance judgements from the
population was normal for our analyses [11]. Linear mixed models are robust to violations of distribu-
tional assumptions [408]. Further, to ensure that the results of our analyses were interpretable, we did
not transform our observed data [50]. To avoid overfitting our predictor values to the current data set,
we also did not fit our sampled data to another distribution [12].
For our LMM, we modeled continuous outcomes (distance walked) for our input variables (pre-

dictors). To answer our research questions, simulated vision loss, connecting cue, and distance from
viewer were treated as factors. Simulated vision loss (3 levels: none, central vision loss, peripheral vision
loss) and connecting cue (2 levels: low contrast, high contrast) were treated as categorical factors. We
employed simple contrast coding to interpret the categorical factors in our experiment. The formula for
our LMM in lmermodel syntax is shown by Equation 10.1 below:

Υ = Response ∼ Distance+ Vision+ Shadow+ Order+ Vision : Distance
+ Vision : Shadow+ (1+ Order|Id)

(10.1)

Participants’ distance judgments were recorded and statistically analyzed in meters. Target distance
was treated as a mean-centered, continuous factor. In addition, because we anticipated that participants
would not perfectly position themselves at the center of the starting point at the start of each trial, the
target distance was calculated as the true distance between the viewer and the target at the start of a
trial. This ensured that participants’ walked distances were compared to the correct distances viewed
during analysis. Our model also included an interaction between simulated vision loss and connecting
cue conditions, since we predicted that connecting cue contrast would have an impact on participants’
distance judgements in the central vision loss condition.
We anticipated that the experimental block order could have an impact on participants’ performance

and that this impact would vary across participants. or example, a participant that is prone to atten-
tional lapses may behave differently than a focused participant on the first trial block. Accordingly, we
included Order (3 levels: first, second, third) as a categorical main effect, together with by-subject ran-
dom slopes for Order [36]. To account for individual variability in behavior over repeated measures, we
also included a by-subject random intercept
We did not anticipate an interaction between simulated vision loss and the experiment block or-
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der conditions (Vision Loss x Order). However, the presence of this interaction would have a pro-
nounced impact on our interpretation of experimental results in this work. Of concern, the interaction
between simulated vision loss and order could indicate that some aspect of our experimental design
influenced experimental outcomes. As such, we conducted a model comparison between our planned
LMM and the same model with Vision Loss x Order included. The performance package in R was
used to compare models and produce a model performance score [288]. This score is calculated by nor-
malizing all fit indices of a model (i.e., Akaike Information Criterion or AIC, Bayesian Information
Criterion or BIC, conditional and marginal R2, ICC, Root Mean Square Error of Approximation
or RMSE, and Bayes Factor or BF), taking their mean, and then returning a score from 0% to 100%.
Higher scores indicate better model performance. Model comparison revealed the model with the in-
teraction included performed no better than the original model without the interaction, with both
receiving performance scores of 50%. Because model fit was not improved by including this interaction
and because the Vision Loss x Order interaction reported in this model was not significant, we opted
not to include this interaction term in our final model.

Response Times

To answer our research questions on the relationship between visual field loss and response times (RTs),
we used a generalized linear mixed effects model (GLMM). Typically, RT distributions have a bell-
like shape with a tail on the right side of the distribution [18, 499]. They also often have a minimum
boundary on the left side of the distribution, since a small amount of time is required to encode a stim-
ulus to execute a response [18].
The Gamma distribution is one of the common distributions used to describe response time data [18,

27, 309], since prior research has demonstrated that RT distributions are not Gaussian [309, 385]. For
Gamma distributions, values are strictly positive and the variance of the distribution increases propor-
tionally with the mean. In this work, we specified a Gamma distribution as an appropriate fit for our
data. A density plot of our sampled response time data can be found in Figure 10.4 (right).
For our generalized linear mixed model (GLMM), we used the glmer function from the lme4 pack-

age [40]. We specified a Gamma distribution and the identity link function for our model. The fixed
and random factors for our model were similar to the LMM’s described in the previous section. We
employed simple contrast coding scheme for comparisons, and we conducted planned contrasts with
estimated marginal means. Bonferroni correction was applied to account for multiple comparisons.
The formula for our GLMM is expressed through glmer syntax in Equation 10.2 as follows:

Υ = RT ∼ Distance+ Vision+ Shadow+ Order+ Vision : Distance
+ Vision : Shadow+ (1+ Order|Id)

(10.2)

We, again, did not anticipate an interaction between vision loss and the experiment block order con-
ditions (Vision Loss x Order). However, to ensure that order did not have a pronounced effect on
our experimental results related to simulated vision loss, we conducted a model comparison between
our hypothesized model and the same model with the Vision Loss x Order interaction included us-
ing the performance package in R [288]. Model comparison revealed the model with the interaction in-
cluded performed worse (25%) than the original model without the interaction (75%). Because model
fit was not improved by including this interaction and because the Vision Loss x Order interaction
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Figure 10.5: The solid lines show the average walked distance for each vision loss condition at the target
distances. The dotted line represents veridical performance and individual points show the raw walked distance

reported in this model was not significant, we opted not to include this interaction term in our final
model.

10.3.6 Results

Distance Judgments

Participants’ distance judgments were recorded and statistically analyzed in meters. However, to facili-
tate comparisons between the current work and prior research, we also provide the error ratios of peo-
ple’s distance judgements in the discussion of our results. To create error ratios, participants’ walked
distances were divided by the actual distances to the target for each trial. A ratio less than 1.0 indicates
distance underestimation, and a ratio greater than 1.0 indicates overestimation.
A summary of the results of our statistical analysis of walked distances data in meters are summarized

in Table 10.1. Overall, we found that participants underestimated distances to targets in our study. The
mean walked distance across all experimental conditions and participants was 2.34m (SD = .66,Min =
1.06,Max = 5.23). An average distance judgement of 2.34m in our experiment corresponds to a dis-
tance ratio of 0.851, or 14.9%, underestimation. This amount of underestimation is in line with what
has been reported in prior distance estimation studies conducted in VR [63, 121, 224]

Distance As shown in the positive slopes of the regression lines in Figure 10.5, participants in-
creased their egocentric distance judgements, as measured through blind walking, to virtual targets as
the actual distance to the targets increased. This outcome is supported by a significant main effect of
distance (B = 0.86, t = 31.29, p < 0.001) in our model. The coefficient for distance indicates that
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Figure 10.6: Estimated marginal means of walked
distances for each Vision Loss condition by Order

Figure 10.7: Results of Vision Loss× Shadow Contrast
interactions for walked distance

participants estimated distances to be approximately 0.86m farther for every meter of increase in actual
distance to the target, on average.

Order As for main effects of order in our planned analyses, there were no significant difference in
distance judgments between experimental blocks after correction for multiple comparisons. However,
there was a trend in which distance judgments were somewhat shorter in the first block of trials com-
pared to the second (B = −0.10, t = −2.02, p = 0.17) and the third block of trials (B = −0.09, t =
−2.07, p = 0.15). Coefficient estimates indicate that people’s distance judgments were approximately
10cm shorter in the first block of trials. In comparison, the difference in distance judgements between
the second and third blocks was quite small, only 1cm, on average (−0.01, t = −.63, p = 1.00). Dis-
tance judgements for each of the vision loss conditions by experimental order are visualized in Fig-
ure 10.6.
As discussed in Philbeck et al. [371], it is important to consider order effects in experimental analyses

for blind walking, given that participants may grow in confidence when walking blindly over the course
of an experiment. Accordingly, although the differences did not meet significance, it is worthwhile to
note the trends in people’s performance based on order in this work. A positive takeaway from our
analysis of order is that there is little evidence of fatigue bias over the duration of the experiment.

ShadowContrast There was no main effect of shadow contrast on people’s distance judgements
(B = −.01, t = −.74, p = .33). This outcome is unsurprising, given that we developed the high
contrast shading condition only for the center vision loss condition. Further, based on the results of the
prior research studies conducted in this dissertation, we did not anticipate that stylized graphics would
perturb distance perception judgements outside of the center vision loss condition.
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Table 10.1: Estimated coefficients for the linear mixed‐effects model (LMM) predicting walked distance from
fixed and random effects. Estimates represent the regression coefficients, CI is the confidence interval of the
regression coefficient. The Intercept value is the grand mean of walked distances. Negative values for Estimates
indicate that walked distances were farther for the first factor in the comparison, whereas positive values
indicate that walked distances were farther for the second factor. Simple slopes were calculated for Vision Loss
× Distance. Planned contrasts on the estimated marginal means were evaluated for Vision Loss×Shadow
Contact. Significance tests adjusted for multiple comparisons with Bonferroni correction.

Predictors Estimates CI t-value p-value Random Effects Variance Corr

(Intercept) 2.34 *** [ 2.19 2.49 ] 31.29 <.001 ICC .72
Distance .86 *** [ .83 .88 ] 68.98 <.001 σ2 .06
Shadow Contrast high - low .01 [ - .02 .04 ] - .74 .33 τ00 Id .13

τ11 Id.2nd .05 .41
Vision Loss none - center .04 [ - .04 .11 ] .95 .46 τ11 Id.3rd .04 .41

none - peripheral - .12 * [ - .19 - .04 ] -3.06 <.05
center - peripheral - .15 ** [ - .23 - .08 ] - 3.98 <.01

Order 1st - 2nd .10 [ .00 .19 ] 2.02 .17
1st - 3rd .09 [ .00 .18 ] 2.07 .15
2nd - 3rd - .01 [ - .07 .06 ] - .63 1.00

Interactions Estimates CI t-ratio p-value Model Fit

Vision Loss×Distance Marginal R2 .55
none - center | distance .05 [ - .03 .12 ] 1.55 .36 Conditional R2 .87
none - peripheral | distance .07 [ - .01 .14 ] 2.18 .09
center - peripheral | distance .02 [ - .05 .09 ] .63 1.00

Vision Loss× Shadow Contrast
high - low | none .01 [ - .04 .06 ] .44 .66
high - low | center .05 * [ .00 .10 ] 2.09 <.05
high - low | peripheral - .03 [ - .08 .02 ] - 1.25 .21

∗p < .05 ∗∗p < .01 ∗∗∗p < .001

Vision Loss Our hypothesis (H1), at least for the main effect of vision loss condition, was rejected.
Instead, our results indicated that distance judgements were significantly different for the peripheral
vision loss condition. Planned contrasts, when collapsed across shadow and order, showed that partic-
ipants underestimated distances significantly more in the peripheral vision loss condition compared to
either the no vision loss (B = −.12, t = −3.06, p < .05) or the central vision loss (B = −.15, t =
−3.98, p < .01) conditions. We did not find a significant difference between no vision loss and center
vision loss (B = −.04, t = −.95, p = .46). This relationship is demonstrated visually by the PVL
condition having the lowest values of the regression lines featured in Figure 10.5.
On average, with no vision loss, participants walked 2.37m (SD = .70,Min = 1.19,Max =

5.23,Ratio = .86). With center vision loss participants walked 2.41m (SD = .66,Min = 1.28,Max =
4.46,Ratio = .88) and with peripheral vision loss participants walked 2.25m (SD = .61,Min =
1.06,Max = 4.62,Ratio = .82).

Vision Loss×ShadowContrast We anticipated that the high contrast shadow connecting cues,
specifically, would be beneficial to individuals with central vision loss. To be precise, we predicted that,
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Figure 10.8: Violin plots of response times for
each vision condition

Figure 10.9: Simple slopes of Vision Loss× Distance
with confidence intervals for response times

for people with central vision loss, depth judgements made to targets with low-contrast shadows would
be overestimated relative to depth judgments made to targets with high-contrast shadows (H2). This
hypothesis was confirmed.
Planned contrasts, collapsed across order, revealed a significant difference in people’s distance judg-

ments between the shadow conditions—but only for the central vision loss condition (B = .05, t =
−2.09, p < .05). The relationship between vision loss condition and shadow contrast are visualized in
Figure 10.7. On average, participants with central vision loss walked 2.43m (SD = .67,Ratio = .884) in
the low-contrast condition and 2.38m (SD = 0.64,Ratio = .866) in the high contrast condition. This
effect was small but significant, as indicated by the value of the fixed effect estimate (B = .05).

Vision Loss×Distance Analysis of the vision loss condition by distance simple slopes did not
indicate significant differences between vision loss conditions (See Table 10.1. As such, we find no evi-
dence in support of or against target distances having a differential impact across vision loss conditions
for distance judgments in the range of distances evaluated for this study.

Response Time

To address our experimental hypotheses (H3, in particular) and to support our primary measure of
interest, we analyzed participant response time (RT) data for each blind walking distance estimation
trial. A summary of the results from the generalized linear mixed model (GLMM) that was fitted to
response time data is shown in Table 10.2.
When we discuss RTs, we report both mean and median RT values in text, since the median is a more

representative measure of central tendency given the strong right skew of the RT data. Overall, The
median response time from participants was 4.73s (Mean = 7.11, SD = 8.31,Min = 1.56,Max =
122.00).
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Table 10.2: Estimated coefficients and confidence intervals for the GLMM with a Gamma distribution
(identity‐link) predicting response time from fixed and random effects. Planned contrasts on the estimated
marginal means were evaluated for Vision Loss×Contact. Simple slopes were calculated for Vision Loss×
Distance. Significance tests adjusted for multiple comparisons with Bonferroni correction.

Predictors Estimates CI t-value p-value Random Effects Variance Corr

(Intercept) 7.23 *** [ 5.79 8.68 ] 9.84 <.001 ICC .95
Distance .54 ** [ .22 .86 ] 3.30 <.01 σ2 .61
Shadow Contrast high - low .03 [ - .31 .37 ] .17 .864 τ00 Id 8.32

τ11 Id.2nd 9.22 - .57
Vision Loss none - center 2.58 *** [ 1.48 3.67 ] 4.63 <.001 τ11 Id.3rd 6.86 - .45

none - peripheral .93 [ - .19 2.04 ] 1.63 .309
center - peripheral - 1.65 ** [ - 2.71 - .59 ] -3.06 <.01

Order 1st - 2nd - 2.07 * [ - 3.62 - .53 ] - 2.64 <.05
1st - 3rd - 2.16 ** [ - 3.51 - .81 ] - 3.15 <.01
2nd - 3rd - .09 [ - 1.07 .89 ] - .18 1.00

Interactions Estimates CI z-ratio p-value Model Fit

Vision Loss×Distance Marginal R2 .18
none - center | distance 1.44 ** [ - .43 2.45 ] 3.41 <.01 Conditional R2 .96
none - peripheral | distance .57 [ - .29 1.42 ] 1.58 .345
center - peripheral | distance -.87 [ - 1.88 .13 ] -2.09 .110

Vision Loss× Shadow Contrast
high - low | none - .36 [ - .90 .19 ] - 1.28 .201
high - low | center .52 [ - .19 1.22 ] 1.4 .150
high - low | peripheral - .05 [ - .59 .49 ] - .18 .856

∗p < .05 ∗∗p < .01 ∗∗∗p < .001

Distance Response times increased as the distance to targets increased, which is indicated by a main
effect of distance in our GLMM (B = .24, t = 2.72, p < .01). This outcome is interesting, because
our response time measure reflects the time it took for participants to determine where the target was
positioned immediately before blind walking. We excluded actual walking time, since this would bias
response times for the farther targets. Despite this, we still found a main effect of distance for response
time. A significant, positive effect of distance for RTs implies that participants required more time to
process visual stimuli when targets were positioned farther away.
When we evaluate the median response times at each difference, we can observe this positive trend,

as well. The median RT was 4.13s (Mean = 5.83, SD = 5.36,Min = 1.56,Max = 53.19) at 2.0m,
4.81s (Mean = 7.86, SD = 11.68,Min = 1.70,Max = 122.00) at 2.5m, 5.02s (Mean = 7.04, SD =
6.44,Min = 1.67,Max = 51.19) at 3.0m, and 5.12s (Mean = 7.70, SD = 8.26,Min = 1.60,Max =
80.66) at 3.5m.

Order For order effects, we found that RTs were slower in the first block of trials. This outcome
provides some evidence of familiarization with the experimental task during the first block of trials.
The median response time was 5.27s (Mean = 8.64, SD = 9.73,Min = 1.78,Max = 122.00) in the
first block versus 4.33s (Mean = 6.35, SD = 6.30,Min = 1.56,Max = 73.27) in the second and 4.28s
(Mean = 6.31, SD = 8.31,Min = 1.67,Max = 82.47) in the third experimental blocks. Post-hoc
pairwise comparisons, indicated that only differences between the first and second block (B = 2.18, z =
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2.76, p < .05) and the first and third block (B = 2.20, z = 3.16, p < .01) of trials were significant. The
difference between the second and third blocks (B = .03, z = .05, p = 1.00) was not.

ShadowContrast There was no significant main effect of shadow contrast condition on people’s
response times (B = .03, z = .17, p = .864). The median RT for the low-contrast shadow condition
was 4.73s (Mean = 7.18, SD = 9.19,Min = 1.56,Max = 122.00), and the median RT for the high-
contrast shadow condition was 4.74s (Mean = 7.04, SD = 7.34,Min = 1.60,Max = 82.47).

Vision Loss People with vision impairments are often able to accomplish tasks as well as people
without vision impairments. However, it can take them longer to do so. Accordingly, we predicted
that RTs would be longer in the vision loss conditions than in the no vision loss condition (H3). This
hypothesis was partially supported. Violin plots of people’s RTs for each of the vision conditions are
shown in Figure 10.8
Planned contrasts, collapsed across shadow and order, showed that response times were significantly

longer for people in the CVL condition than both the no vision loss condition (B = 2.51, z = 4.42, p <
.001) and the peripheral condition (B = 1.60, z = 2.90, p < .05). There was no significant difference
between the peripheral vision loss and no vision loss conditions (B = −.912, z = −1.55, p = .27).
The median RT for the central vision loss was 5.50s (Mean = 8.49, SD = 10.01,Min = 1.76,Max =
82.47). The median RTs for the no vision loss and peripheral vision loss conditions were 4.19s (Mean =
5.63, SD = 4.40,Min = 1.56,Max = 30.70) and 4.57s (Mean = 7.24, SD = 9.01,Min = 1.60,Max =
122.00).

Vision Loss×ShadowContrast There was no significant interaction between vision loss condi-
tion and shadow contrast condition for response times (See Table 10.2).

Vision Loss×Distance We report an interaction between vision loss condition and distance in
which, as distances increased, the RTs for the center vision loss condition increased at a faster rate than
RTs increased for the no vision loss condition (B = −1.44, z = −3.41, p < .01). Interaction effects
between the other vision groups did not reach significance (See Table 10.2). For the CVL condition in
Figure 10.9, we can observe a positive slope in the regression lines for the plots of raw RT data across
distances.

10.3.7 Discussion
The outcomes of our experiment have ramification for our understanding of the visual information
that people attend to when making depth perception judgments. And they have implications for indi-
viduals with peripheral and central visual field loss.
Given that this experiment was conducted in the HTCVive Pro Eye, we expected people to under-

estimate distances, regardless of any experimental manipulations. The amount of underestimation we
found (24.2%) is less than the amount reported in our previous distance estimation experiments that
were conducted with the Varjo XR-3 through verbal report (Exp 1: 20.2%, Exp2: 29%) [4]. It is also
less than the amount of underestimation Buck et al. [63] reported for the HTCVive Pro with blind
walking estimation protocol (34%). However, more accurate distance estimation is not a surprising
outcome, given that we evaluated notably closer distances.
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For example, the amount of underestimation we find in the current work is quite similar to the
13.2% reported by Kelly et al. [224] in the HTCVive for targets positioned at 1-5m. In contrast, in
our prior work target distances ranged between 3-6m, and target distances were positioned even far-
ther (5-10m) in Buck et al. [63]. In addition, the Varjo XR-3 display that we used in our previous ex-
periment weighs more than the HTCVive Pro, which may have further contributed to compressed
distance judgments in that device [4, 501].

10.3.8 Peripheral vision loss exacerbates distance underestimation
In this experiment, we found that people with peripheral vision loss (PVL) underestimated distances
more than any other vision condition. If we look at the results of prior VR display research, several
studies have demonstrated that a restricted FOV in these displays (likely in conjunction with their
weight [501]) contributes to distance compression [64, 303, 501]. These experiments were almost ex-
clusively conducted with complete occlusion of peripheral vision, since they were modeled to simulate
the properties of an HMD. However, there are a few notable exceptions that can provide additional
context to the current work.
For example, Jones et al. [212] demonstrated that applying constant white light to the periphery, dis-

tance underestimation in VR could be partially mitigated. In followup investigations, Jones et al. [214],
compared distance judgements made with peripheral light stimulation in a restricted FOV condition
(47◦ × 40◦) to distance judgments made when a larger FOV was provided (150◦ × 85◦) in a virtual envi-
ronment and reported no significant difference in people’s distance judgements. Li and colleagues [272,
273] then probed into this phenomenon further by comparing the effect of different levels of lumi-
nance along the boarders of an HMD’s screen on distance judgements. The center of the display (47◦ ×
40◦) was rendered normally, and the remaining FOV (110◦ × 90◦) was rendered with a grayscale color
value. They found that a certain threshold of brightness was required to evoke improvements in dis-
tance judgements. In the third experiment conducted by Li et al. [273], the authors compared distance
judgements made to targets when the area in the remaining FOVwas rendered as black to distance
judgements made when this region was rendered with a downsampled, pixelated image. They once
again found that peripheral stimulation, this time with a pixelated image, improved distance judge-
ments.
The PVL condition in this work differs from those in the aforementioned experiments in a few key

aspects. First, the loss of peripheral vision is applied through a radial gradient in our vision simulation.
In contrast, the peripheral vision manipulations employed by the aforementioned works introduced
abrupt changes in vision along a straight edge within or beyond the display screen. Even the pixelated
treatment provided by Li et al. [273] consisted of sharp edges brought on by the large blocks of the
pixelation method. Peripheral vision is quite sensitive to edge and motion detection. It is possible that
the peripheral stimulation effects demonstrated by these prior studies were effective in part because they
added sharp, high-contrast stimulation to the periphery—not just the presence of light, as argued. In
contrast, our method provides light stimulation, but contrast is reduced due to Gaussian blurring.
It is possible that the gradual onset of vision loss coupled with the reduction of contrast at the pe-

riphery discouraged participants from visually scanning their environment to gather the spatial infor-
mation that they needed to make more accurate distance judgements. Wu et al. [510] demonstrated
that even when FOV is restricted, an observer can accurately judge absolute distances in the real world
by scanning local patches of the ground surface in the environment. Similarly, other experiments in
the real world have demonstrated that even when FOV is restricted, people can make accurate distance
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judgements when head movements are not restricted [91, 233, 510]. If participants did not perform vi-
sual scanning to compensate for their vision loss, then this could also explain why the PVL condition in
our study exhibited more underestimation than our other conditions. In the final publication for this
work, it may be fruitful to look at gaze data collected throughout the experiment to better understand
how differences in visual scanning behavior may have impacted people’s behavior in this experiment.
A second major difference between this work and the previous studies is that peripheral vision loss

in our study was eye-tracked. In all the aforementioned experiments, whether they were conducted in
VR or in a real environment, FOV restrictions were not tied to a participant’s gaze direction. They were
tied to a participant’s heading. It is highly likely that behaviors induced by FOV restrictions based on
gaze direction will differ from those induced by FOV restrictions based on head direction, especially
with regard to behaviors like visually scanning.
Another argument could be made that the difference in our result is due to the FOV restriction em-

ployed in this work being simply smaller than what was evaluated in the peripheral stimulation studies.
Perhaps the peripheral vision restriction was too severe for positive effects of peripheral stimulation to
work as expected. One might also consider that the egocentric distance estimation task, in which targets
were always presented immediately in front of the viewer, naturally discouraged participants from vi-
sually scanning the environment since they did not need to look around the environment to locate the
target. This theory is less compelling, given that the peripheral stimulation studies employed the same
blind walking protocol [212, 214, 272, 273].
Regardless, the current work provides interesting new insights into the relationship between pe-

ripheral vision and spatial perception in HMDs. It also provides inspiration for a number of potential
avenues for future investigations that may further elucidate their relationship.
As for the implications of our work for low vision patients with severe peripheral vision loss, this

work in conjunction with prior research investigating peripheral vision restrictions indicate that pe-
ripheral vision is quite important for spatial perception. The importance of peripheral vision has been
demonstrated in a number of domains related to spatial perception in prior research, as well. For exam-
ple, peripheral vision is important for understanding the layout of an environment [259].
However, the results of research that has evaluated depth perception judgements in real patients with

peripheral vision loss are less clear. In studies where PVL patients are asked to make depth judgments
and to make fine motor controlled behaviors, patients with PVL often perform better than patients
with CVL [355, 470]. However, some of this research also reports evidence that size and scale at near-
distances may be adversely affected by PVL [238, 431]. In the current work, people were least accurate
in the peripheral vision loss condition. The differences in experimental outcomes between simulated
PVL studies and studies conducted with real patients with PVL are important to note. It may be that
these differences arise due to the evaluated distances.While much of the simulated work has been con-
ducted in action space (distances beyond 2m), research conducted with real PVL patients have been
conducted in near-space (distances less than 2m). In future research, it may be beneficial to consider
evaluating closer distances in order to draw better comparisons between simulated and real PVL stud-
ies.

10.3.9 Stylized shadows impact people with central vision loss
We found that distance judgments made to targets with realistic, low-contrast shadows were overesti-
mated relative to judgments made to targets with stylized, high-contrast shadows in the center vision
loss (CVL) condition.
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Like much of the work in this dissertation, our investigation into the influence of shadow shading
in this work was motivated by the importance of surface contact for spatial perception. In the case of
center vision loss, the relationship between floating objects and the surface beneath them can become
obscured. To compensate for reduced vision in the center of the visual field for participants in the CVL
condition, we included high contrast cast shadows in our experiment.
Recall the 5th experiment of this dissertation, in which we evaluated distance perception judgements

to floating targets with and without the presence of cast shadows. In this experiment, participants in
the no shadow condition perceived floating targets as farther away, because in the absence of a surface
contact cue people rely on optical contact to determine the position of objects in space [4]—where
optical contact refers to the location at which the projected image of an object contacts the image of the
ground beneath it [314, 332, 352]. In essence, we anticipated that a similar effect would occur when
central vision was impaired by the vision simulation. This idea is motivated by prior research by Rand
et al. [383, 384] in which a similar effect was found when surface contact cues (e.g., an object placed on
a stand) when global reductions in visual acuity obscured the appearance of the stand.
We found our predicted effect in this study. The high-contrast shadow cue anchored people’s dis-

tance judgements in the CVL condition. As a result, their distance judgements in this condition were
similar to the distance judgements made without any vision loss. This can be seen visually in Figure 10.7.
However, the effect of shadow contrast for CVL was small. This is likely explained by the small verti-
cal offset used for targets in this study. We anticipate that a more pronounced effect of high-contrast
graphics would be found in different contexts.
For example, prior studies with real patients have found that people with CVL often perform worse

than people with PVL [356, 431] and age-matched controls [470, 482] at near-distance tasks that re-
quire fine motor control. In this context, it is likely that visual aids like the ones we present in the cur-
rent work would be helpful. Moving forward, it may be worthwhile to consider how visual accessibility
aids can be modified based on the size of a central scotoma, as well. For example, the size of the stylized
cast shadows featured in the current work may not be as beneficial for a patient with a larger central
scotoma. Given the heterogeneity of scotoma shapes and sizes in real patients, it may be beneficial to
study the relationship between the size of a scotoma and the difficulty of interpreting the depth of ob-
jects in space based on the size of the retinal image of those objects.
The impact of shadow shading in this experiment is somewhat modest, but this small effect opens

up the possibility to pursue more ambitious visualizations to enhance spatial perception. And this first
study provides the groundwork for future investigations into the influence of central vision loss on
spatial perception.

10.3.10 Central vision loss increases response times
Another interesting finding from this work was that people’s response times (RTs) were longer in the
central vision loss condition. Further, participants’ RTs in this condition increased with target distance.
This finding reinforces the importance of acknowledging the relationship between the size of a center
scotoma and the size of an object on the retinal image of the human eye.
The size of an object on the retinal image of the human eye decreases as the distance of the object

from the viewer increases [147]. However, the size of the simulated central scotoma in the CVL con-
dition of our study remained constant. As a result, in the CVL condition, participants required more
time to make distance judgements when the target was positioned farther away. Figure 10.9 shows the
increased response times for the CVL condition as distances increased.
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10.3.11 Limitations
Of course, there are a number of limitations to this study. First, the data quality of the eye tracker and
the resolution of the HTCVive Pro Eye are not ideal for true vision simulation. It is also possible that
the presence of a tether for the HMD exacerbated distance underestimation in this experiment, since
the HTCVive Pro Eye was connected to a computer. Although prior research has found blind walk-
ing assessments of distance perception can be less susceptible to the influence of environmental con-
text [248], it is also possible that properties of the environmental context provided by the environment
could have influenced our results [303]. It may be worthwhile to conduct assessments across varied
virtual environments in future work to ensure results are generalizable.
The adaptation phase for acclimating to each vision loss condition was only two minutes long. The

compensatory strategies developed by participants to make depth judgements are likely different from
those used by patients with similar forms of vision loss who have developed compensatory strategies
over time, often years. Our research has interesting implications for the impact of visual field loss on
depth judgements, but we cannot assume that this work provides a perfect parallel for understanding
perception and behavior of real patients.
In future research, it may be worthwhile to investigate the relationship between target size, in degrees

of field of view, and the extent of visual field loss on depth perception judgments. One may expect that
as the central scotoma occludes more visual information and environmental context, that the impact of
central vision loss on depth perception may become more pronounced.

Adaptations to Simulated Vision Loss

Vision simulations become particularly useful as a design tool if they can introduce functional impair-
ments similar to the ones experienced by people with low vision. Prior research on desktop simula-
tion of low vision has shown the potential of vision simulation for studying the behaviors of people
with low vision. This research provides evidence that, at least in simple 2D tasks, visual impairment
simulations can introduce functional impairments in normally-sighted individuals that mimic the
impairments of people with visual field loss [85, 387, 476, 488]. When given a simulated central sco-
toma, people even develop similar compensatory vision behaviors to those seen in real low vision pa-
tients [85, 488]. Specifically, people with simulated central scotomas learn to rely on areas of vision
outside of a central scotoma, using regions termed preferred retinal loci (PRL), to improve perfor-
mance on visual tasks like object identification [85, 488] and reading [387, 476].
However, such adaptations do not occur spontaneously and, indeed, the adaptations that occurred

in the aforementioned studies developed after hours of exposure. It is likely that functional impair-
ments may be exaggerated in low vision simulations, since users will only temporarily experience vision
impairment. Patients with low vision adapt their behaviors over time, often months, to compensate for
gradual vision loss [67, 411]. In contrast, someone with a simulated scotoma experiences a rapid onset
of vision loss. Because of this, the compensatory strategies between real and simulated low vision peo-
ple may differ [17, 476, 488]. Unfortunately, the nature of these differences is unclear due to the lack
of prior research investigating differences between real and simulated low vision. Such investigations
will be worthwhile to pursue in future research to better determine the efficacy of vision simulation’s
ability to reproduce behaviors of real patients with low vision.
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10.4 Summary

In this chapter, we finally extended our research findings on participants with normal vision to those
with vision impairments via a simulation study. The findings of our investigation suggest that people
with peripheral vision loss (PVL) underestimated distances more than people with central or no vi-
sion loss in action space, possibly due to limitations in scanning the environment or using the visual
horizon. Contrary to expectations, central vision loss (CVL) did not significantly impact distance judg-
ments. This outcome may be related to the large size (20cm diameter) of the target object. Longer re-
sponse times in the CVL condition, suggests that participants employed different viewing strategies to
determine the position of a target in space compared to the other vision loss conditions. It is likely that
this reflects the use of visual scanning to make use of intact peripheral vision to view the target. Analyz-
ing gaze data could shed light on these compensatory strategies.
In a similar manner to what we found in our previous experiments, in general we did not observe

significant differences in depth perception judgements between the realistic, low-contrast shadow con-
necting cue and the stylized high-contrast connecting cue. However, we did find the predicted inter-
action between vision condition and shadow contrast in which participants with CVL overestimated
depth judgments to targets with low-contrast shadows compared to depth judgments to targets with
high-contrast connecting cues.
To our knowledge, the current work is the first to look at direct measures of distance perception in

action space for people without central vision. We believe our vision simulation and our approach
to better understanding the impact of visual field loss on spatial perception provided the necessary
groundwork for future research that seeks to understand how visual information impacts people’s spa-
tial perception.
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Finish what you started, human
Kamaji, Spirited Away (2001)

11 Conclusions

This dissertation investigated how visual design choices in mixed reality (MR) displays influence depth
perception. Our investigations are particularly impactful for MR, given the large amount of research
that has demonstrated that spatial perception is distorted in head-mounted displays (HMDs). In addi-
tion, our research allows for the expansion of MR depth perception research to begin expanding to a
broader, more inclusive audience through the development of a vision simulation that can be used for
the controlled study of depth perception in people with vision loss.
Our work was initially inspired by theories on depth cue integration in augmented reality (AR).

Previously, researchers have suggested that graphical realism was crucial for mitigating these distortions
in AR. However, our investigations in this research on realistic vs. non-photorealistic shading for cast
shadows (a vital depth cue) revealed that realistic graphics may not always be necessary for good spatial
perception inMR (Aim 1).
Building on this initial finding, subsequent studies (Aim 2) explored the influence of realistic and

non-photorealistic rendering approaches on depth perception across various MR displays with differ-
ent optical and graphical features. This broader exploration aimed to understand how display prop-
erties and shadow shading methods impact depth perception. Aim 2 specifically focused on absolute
egocentric distance judgments in AR, extending the investigation to another common depth percep-
tion measure for broader understanding and to better draw connections between our investigations
and existing research. Accessible AR interfaces often employ object highlights and edge enhancements
to improve contrast, and we hypothesized that non-photorealistic graphics similar to those evaluated in
Aims 1 & 2, by increasing the shadow’s contrast against the background, might benefit depth percep-
tion in AR for individuals with low vision.
This research also examined how different shadow rendering approaches could enhance distance

perception for objects positioned above the ground, a particularly relevant aspect for AR user interfaces
often located mid-air. Understanding perception of mid-air virtual objects is crucial for user interaction
in AR, especially considering the prevalence of AR interfaces that position content above the ground
for easy viewing.
However, prior research has shown that individuals with severe visual impairments face substantial

challenges in determining the position of such objects [383, 384]. To test this hypothesis and to pro-
vide other people a valuable tool for future research and development in the absence of real test users,
Aim 3 proposed the development of a data-driven low vision simulation with eye-tracking. We then
applied this vision simulation to better understand how central vision loss and peripheral vision loss
impact depth perception and to determine if the non-photorealistic shading approaches for cast shad-
ows would be beneficial for individuals with vision loss.
Overall, this dissertation contributes valuable insights into how both normally sighted and visually
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impaired users perceive virtual objects in mixed reality. Furthermore, it lays important groundwork for
future research on depth perception and accessibility in AR. The main contributions of this disserta-
tion are as follows:

Challenging the Need for Photorealism

The first two aims of this dissertation (Aim 1 and Aim 2) challenged the assumption that photorealistic
rendering techniques are necessary for accurate depth perception inMR. These studies demonstrated
that people’s ability to perceive both surface contact and egocentric distances was actually improved
when virtual objects were rendered with non-photorealistic shadows compared to photorealistic ver-
sions. This finding holds significant promise for two audiences: developers working within the limi-
tations of contemporary MR displays and those working in the field of low vision accessibility, where
applications often employ non-photorealistic graphical elements to enhance object visibility.

The Benefits of Shadows, Regardless of Realism

Aim 2 also established that the presence of shadows, regardless of whether they are photorealistic or
not, improves depth judgments for virtual objects regardless of their position (on or above the ground).
However, the study did not determine if this relationship remains consistent when objects are placed
at greater heights, such as eye-level. This finding offers developers a simple and empirically proven ap-
proach for improving user perception of objects in space withinMR environments. Additionally, it
helps to fill existing gaps in the literature regarding the roles of virtual shadows and object height in AR
depth perception.

The Development of Vision Simulation Accessibility Tool

The final aim of this dissertation (Aim 3) focused on the development of a data-driven low vision sim-
ulation testbed integrated with eye-tracking. This tool aims to empower MR developers to design for
individuals with low vision without requiring access to real-world test participants. We provided valu-
able insight into the status of modern eye-tracked HMDs through a data quality assessment, and we
demonstrated how understanding data quality is imperative for the design of applications and experi-
ments that employ eye tracking.

Extending our Findings to People with Vision Loss

Our final experiment bridged the gap in research between the fields of spatial perception and accessibil-
ity, and it lays a strong foundation for future research endeavors at the intersections of human percep-
tion and behavior and accessibility. In addition, we revealed differential impacts of central and periph-
eral vision loss on depth perception in action space. And we demonstrated that high contrast surface
contact cues could be used to improve depth judgments for people with central vision loss.

Future Directions and Significance

This dissertation contributes significantly to our understanding of how visual design choices in MR
displays impact depth perception for both normally sighted and visually impaired users. Additionally,
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the proposed low vision simulation has the potential to accelerate accessibility advancements by al-
lowing developers to design and test applications without requiring real-world test participants with
low vision. Overall, this research paves the way for more inclusive and accessible MR experiences for a
broader audience.
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